1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arisa [49]
3 years ago
8

Graph the following equation y=3(0.5)^X

Mathematics
1 answer:
NemiM [27]3 years ago
4 0

Answer:

He I have no clue what I can get a hold on to it now and again I am going to be a great time with the girls are

You might be interested in
Question 7
Readme [11.4K]

Answer:A

Step-by-step explanation: 6 divided by 420 = 70

6 0
2 years ago
The area of a rectangle is 30+12x what are 3 possibilities for the length and width of the rectangle
Stolb23 [73]

In order to find the three possibilities, you must first think of common factors between 30 and 12:

Factors of 30: 1, 2, 3, 5, 6, 10, 15, 30

Factors of 12: 1, 2, 3, 4, 6, 12

We can find three common factors between the two numbers: 2, 3, and 6. So these are three widths that we can use. The length can be found by factoring out the numbers from 30+12x (we can't factor out x):

30+12x=2(15+6x)      Width: 2      Length: 15+6x

20+12x=3(10+4x)      Width: 3      Length: 10+4x

20+12x=6(5+2x)       Width: 6      Length: 5+2x

4 0
3 years ago
Unit 3 parallel and perpendicular lines homework 4 parallel line proofs
Alex17521 [72]

Answer:

1) c ║ d by consecutive interior angles theorem

2) m∠3 + m∠6 = 180° by transitive property

3) ∠2 ≅ ∠5 by definition of congruency

4) t ║ v                                    {}                   Corresponding angle theorem

5) ∠14 and ∠11  are supplementary         {}  Definition of supplementary angles

6) ∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem

Step-by-step explanation:

1) Statement                                {}                                     Reason

m∠4 + m∠7 = 180°                                 {}   Given

m∠4 ≅ m∠6                                {}              Vertically opposite angles

m∠4 = m∠6                               {}                Definition of congruency

m∠6 + m∠7 = 180°                                {}    Transitive property

m∠6 and m∠7 are supplementary     {}     Definition of supplementary angles

∴ c ║ d                               {}                       Consecutive interior angles theorem

2) Statement                                {}                                     Reason

m∠3 = m∠8                                 {}           Given

m∠8 + m∠6 = 180°                {}                 Sum of angles on a straight line

∴ m∠3 + m∠6 = 180°               {}               Transitive property

3) Statement                                {}                                     Reason

p ║ q                                 {}                    Given

∠1 ≅ ∠5                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠2 ≅ ∠1                               {}                  Alternate interior angles theorem

∠2 = ∠1                               {}                   Definition of congruency

∠2 = ∠5                                  {}               Transitive property

∠2 ≅ ∠5                                  {}              Definition of congruency.

4) Statement                                {}                                     Reason

∠1 ≅ ∠5                                  {}                Given

∠3 ≅ ∠4                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠3 = ∠4                               {}                  Definition of congruency

∠5 ≅ ∠4                               {}                 Vertically opposite angles

∠5 = ∠4                               {}                  Definition of congruency

∠5 = ∠3                                  {}               Transitive property

∠1 = ∠3                                  {}                Transitive property

∠1 ≅ ∠3                                  {}                Definition of congruency.

t ║ v                                    {}                   Corresponding angle theorem

5) Statement                                {}                                     Reason

∠5 ≅ ∠16                                  {}              Given

∠2 ≅ ∠4                               {}                  Given

∠5 = ∠16                               {}                  Definition of congruency

∠2 = ∠4                               {}                   Definition of congruency

EF ║ GH                               {}                  Corresponding angle theorem

∠14 ≅ ∠16                               {}                Corresponding angles

∠14 = ∠16                               {}                 Definition of congruency

∠5 = ∠14                                  {}               Transitive property

∠5 + ∠11 = 180°                {}                       Sum of angles on a straight line

∠14 + ∠11 = 180°                                {}      Transitive property

∠14 and ∠11  are supplementary         {}  Definition of supplementary angles  

6) Statement                                {}                                     Reason

l ║ m                                 {}                      Given

∠4 ≅ ∠7                               {}                  Given

∠4 = ∠7                               {}                   Definition of congruency

∠2 ≅ ∠7                               {}                  Alternate angles

∠2 = ∠7                               {}                   Definition of congruency

∠2 = ∠4                                  {}               Transitive property

∠2 ≅ ∠4                               {}                  Definition of congruency

∠2 and ∠4 are corresponding angles   {} Definition

DA ║ EB                               {}                  Corresponding angle theorem

∠8 and ∠9  are consecutive  interior angles    {} Definition

∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem.

6 0
3 years ago
The expression 3^2 ∙ 3^n simplifies to 3^20.
tiny-mole [99]

Answer: 18

<u>Step-by-step explanation:</u>

3² * 3ⁿ = 3²⁰

3⁽²⁺ⁿ⁾  = 3²⁰

 2 + n = 20

<u> -2      </u>   <u>  -2</u>

       n = 18

7 0
2 years ago
The radius of a circle is 1 mm. What is the circle's circumference? ​
hodyreva [135]

Answer:

C≈6.28mm

Step-by-step explanation:

C=2πr

= 2·π·1≈6.28319mm

3 0
2 years ago
Read 2 more answers
Other questions:
  • scott is riding a bike course that is 50 miles long. So far, he has ridden 6 miles of the course. What percentage of the course
    5·1 answer
  • Find two consecutive odd integers whose product is 323
    13·1 answer
  • 3x+5=2x+8 it’s urgent!need step by step
    15·2 answers
  • Is this relationship linear, exponential, or neither?
    13·1 answer
  • the population of california is about 39 million . is this greater that or less than 10 with exponted 7
    11·1 answer
  • Evaluate the function f(x) at the given numbers (correct to six decimal places). f(x) = x2 − 9x x2 − 8x − 9 , x = 0, −0.5, −0.9,
    12·1 answer
  • Find the value of x in each triangle
    14·1 answer
  • HELP DUE IN 10 MINS! Find the missing side measurement.
    5·2 answers
  • Which relationships describe angles 1 and 2?
    14·2 answers
  • One-eighth of the parts tooled by a machine are rejects. How many parts were tooled
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!