The answer to this would be d. Precipitation patterns .
Explanation:
Bernoulli equation for the flow between bottom of the tank and pipe exit point is as follows.
= 
![\frac{(100 \times 144)}{62.43} + 0 + h[tex] = [tex]\frac{(50 \times 144)}{(62.43)} + \frac{(70)^{2}}{2(32.2)} + 0 + 40 + 60](https://tex.z-dn.net/?f=%5Cfrac%7B%28100%20%5Ctimes%20144%29%7D%7B62.43%7D%20%2B%200%20%2B%20h%5Btex%5D%20%3D%20%5Btex%5D%5Cfrac%7B%2850%20%5Ctimes%20144%29%7D%7B%2862.43%29%7D%20%2B%20%5Cfrac%7B%2870%29%5E%7B2%7D%7D%7B2%2832.2%29%7D%20%2B%200%20%2B%2040%20%2B%2060)
h = 
= 60.76 ft
Hence, formula to calculate theoretical power produced by the turbine is as follows.
P = mgh
= 
= 6076 lb.ft/s
= 11.047 hp
Efficiency of the turbine will be as follows.
=
× 100%
=
= 52.684%
Thus, we can conclude that the efficiency of the turbine is 52.684%.
The electron group arrangement of NO²⁻is trigonal planar. The molecular shape is bent, and the bond angle is 120°.
<h3>What is the molecular shape of a compound?</h3>
The molecular geometry of the compound shows the position of nuclei and the electron of the compound. It shows how the joining of electrons and nuclei makes the shape of the compound.
Like here, the shape of nitrite is bent with lone pair which is shown by Lewis's structure The bond angle will be the distance between the nuclei of the neighbor atoms.
Thus, the electron geometry arrangement of nitrite is trigonal planer with a bent shape and the bond angle will be 120°.
To learn more about molecular geometry, refer to the link:
brainly.com/question/7558603
#SPJ4
Answer:
moles of CO2 can be produced from a reaction of 10.0 moles C2H6
Explanation:
In this reaction -
2 moles of C₂H6 produces four molecules of Carbon dioxide (CO2)
So 1 mole of C₂H6 will produce
moles of Carbon dioxide (CO2)
Thus, 10 moles of C₂H6 will produce
moles of Carbon dioxide (CO2)