Charles Law
Explanation:
Step 1:
It is given that the original volume of the gas is 250 ml at 300 K temperature and 1 atmosphere pressure. We need to find the volume of the same gas when the temperature is 350 K and 1 atmosphere pressure.
Step 2:
We observe that the gas pressure is the same in both the cases while the temperature is different. So we need a law that explains the volume change of a gas when temperature is changed, without any change to the pressure.
Step 3:
Charles law provides the relationship between the gas volume and temperature, at a given pressure
Step 4:
Hence we conclude that Charles law can be used.
Answer:
1470kgm²
Explanation:
The formula for expressing the moment of inertial is expressed as;
I = 1/3mr²
m is the mass of the body
r is the radius
Since there are three rotor blades, the moment of inertia will be;
I = 3(1/3mr²)
I = mr²
Given
m = 120kg
r = 3.50m
Required
Moment of inertia
Substitute the given values and get I
I = 120(3.50)²
I = 120(12.25)
I = 1470kgm²
Hence the moment of inertial of the three rotor blades about the axis of rotation is 1470kgm²
M = mass of the first sphere = 10 kg
m = mass of the second sphere = 8 kg
V = initial velocity of the first sphere before collision = 10 m/s
v = initial velocity of the second sphere before collision = 0 m/s
V' = final velocity of the first sphere after collision = ?
v' = final velocity of the second sphere after collision = 4 m/s
using conservation of momentum
M V + m v = M V' + m v'
(10) (10) + (8) (0) = (10) V' + (8) (4)
100 = (10) V' + 32
(10) V' = 68
V' = 6.8 m/s