Answer:
The magnitude of the hiker’s displacement is 2.96 km
Explanation:
Let the initial displacement of the hiker, = x = 2km
the final displacement of the hiker, = y = 1.4 km
The resultant of the two vectors, According to Pythagorean theorem is the vector sum of the two vectors.
R' = x' + y'
Check the image uploaded for solution;
Answer: 250n
Explanation:
The formula for gravitational force is: F = (gMm)/r^2
There are two factors at play here:
1) The mass of the planet 'M'
2) The radius 'r'
We can ignore the small M and the g, they are constants that do not alter the outcome of this question.
You can see that both M and r are double that of earth. So lets say earth has M=1 and r=1. Then, new planet would have M=2 and r=2. Let's sub these two sets into the equation:
Earth. F = M/r^2 = 1/1
New planet. F = M/r^2 = 2/4 = 1/2
So you can see that the force on the new planet is half of that felt on Earth.
The question tells us that the force on earth is 500n for this person, so then on the new planet it would be half! So, 250n!
Given: A cubic tank holds 1,000.0 kg of water.
Mass of water in tank (m) = 1000.0 kg
Density of water (d) = 1000.0 kg /m³
Concept: Volume(V) = Mass / Density
Since the tank holds these water in it so the volume of water will be equal to the volume of the tank.
Hence, the volume of the tank = Mass of water / Density of water
or, = 1000.0 kg / 1000.0 kg m⁻³
or, = 1.0 m³
Since tank is cubical in shape. Let its side be 'x'
The volume of tank (x³) = 1.0 m³
or. side of tank (x) = 1.0 m
Hence, the dimensions of the tank will be 1.0 m.
Increasing the pressure of gas is like exactly the same as increasing its concentration. If you have a given mass of gas, the way you increase its pressure is to squeeze it into a smaller volume.
Hope this helps!
Explanation:
Water (H2O) as a polar covalent molecule has its arrangement of oxygen and hydrogen atoms where one end (hydrogen) has a partially positive charge while the other side (oxygen) had a partially negative charge.
It is also capable of forming hydrogen bonds with polar molecules. Each water molecule can form two hydrogen bonds involving their hydrogen atoms and two further hydrogen bonds using the hydrogen atoms attached to neighboring water molecules.