Answer:
The distance traveled by the woman is 34.1m
Explanation:
Given
The initial height of the cliff
yo = 45m final, positition y = 0m bottom of the cliff
y = yo + ut -1/2gt²
u = 20.0m/s initial speed
g = 9.80m/s²
0 = 45.0 + 20×t –1/2×9.8×t²
0 = 45 +20t –4.9t²
Solving quadratically or by using a calculator,
t = 5.69s and –1.61s byt time cannot be negative so t = 5.69s
So this is the total time it takes for the ball to reach the ground from the height it was thrown.
The distance traveled by the woman is
s = vt
Given the speed of the woman v = 6.00m/s
Therefore
s = 6.00×5.69 = 34.14m
Approximately 34.1m to 3 significant figures.
Answer:
the angle of incidence θ is 45.56 º
Explanation:
Given data
strikes the mirror before wall x = 30.7 cm
reflected ray strikes the wall y = 30.1 cm
to find out
the angle of incidence θ
solution
let us consider ray is strike at angle θ so after strike on surface ray strike to wall at angle 90 - θ
we will apply here right angle triangle rule that is
tan( 90 - θ) = y /x
tan( 90 - θ) = 30.1 / 30.7
90 - θ = tan^-1 (30.1/30.7)
90 - θ = 44.4345
θ = 45.56 º
the angle of incidence θ is 45.56 º
Answer:
Explanation:
Given that,
Mass of the heavier car m_1 = 1750 kg
Mass of the lighter car m_2 = 1350 kg
The speed of the lighter car just after collision can be represented as follows


b) the change in the combined kinetic energy of the two-car system during this collision

substitute the value in the equation above

Hence, the change in combine kinetic energy is -2534.78J
Answer:
The waves will increase in frequency
Explanation:
As the young girl moves her hand back and forth faster, it will be observed that number of back and forth motions increase every second. Also the distance between crest and trough of the wave (wavelength) will be reduced as she moves her hand back and forth faster.
Frequency = number of turns (moves) per second
The waves will increase in frequency since there will be more number of back and forth motions in every second.
Also,
The distance between crest and trough will be reduced, which implies that there will be decrease in waves wavelength.
This can also be verified using wave equation;
V = Fλ
At constant velocity,
F ∝ ¹/λ
Thus, decrease in wavelength will cause increase in frequency of the waves.
The right answer is : The waves will increase in frequency
The formula for getting the distance will be distance = speed x time
D = S x T
speed or velocity = 50km/h
time = 0.5 h
the equation will be done directly because it's already in it's SI units
distance = 50km/h x 0.5h
hour cancels hour and the equation remains = 50km x 0.5
Ans = 25 km
the train will move 25 km far in 0.5h