L
=
∫
t
f
t
i
√
(
d
x
d
t
)
2
+
(
d
y
d
t
)
2
d
t
. Since
x
and
y
are perpendicular, it's not difficult to see why this computes the arclength.
It isn't very different from the arclength of a regular function:
L
=
∫
b
a
√
1
+
(
d
y
d
x
)
2
d
x
. If you need the derivation of the parametric formula, please ask it as a separate question.
We find the 2 derivatives:
d
x
d
t
=
3
−
3
t
2
d
y
d
t
=
6
t
And we substitute these into the integral:
L
=
∫
√
3
0
√
(
3
−
3
t
2
)
2
+
(
6
t
)
2
d
t
And solve:
=
∫
√
3
0
√
9
−
18
t
2
+
9
t
4
+
36
t
2
d
t
=
∫
√
3
0
√
9
+
18
t
2
+
9
t
4
d
t
=
∫
√
3
0
√
(
3
+
3
t
2
)
2
d
t
=
∫
√
3
0
(
3
+
3
t
2
)
d
t
=
3
t
+
t
3
∣
∣
√
3
0
=
3
√
3
+
3
√
3
=6The arclength of a parametric curve can be found using the formula:
L
=
∫
t
f
t
i
√
(
d
x
d
t
)
2
+
(
d
y
d
t
)
2
d
t
. Since
x
and
y
are perpendicular, it's not difficult to see why this computes the arclength.
It isn't very different from the arclength of a regular function:
L
=
∫
b
a
√
1
+
(
d
y
d
x
)
2
d
x
. If you need the derivation of the parametric formula, please ask it as a separate question.
We find the 2 derivatives:
d
x
d
t
=
3
−
3
t
2
d
y
d
t
=
6
t
And we substitute these into the integral:
L
=
∫
√
3
0
√
(
3
−
3
t
2
)
2
+
(
6
t
)
2
d
t
And solve:
=
∫
√
3
0
√
9
−
18
t
2
+
9
t
4
+
36
t
2
d
t
=
∫
√
3
0
√
9
+
18
t
2
+
9
t
4
d
t
=
∫
√
3
0
√
(
3
+
3
t
2
)
2
d
t
=
∫
√
3
0
(
3
+
3
t
2
)
d
t
=
3
t
+
t
3
∣
∣
√
3
0
=
3
√
3
+
3
√
3
=
6
√
3
Be aware that arclength usually has a difficult function to integrate. Most integrable functions look like the above where a binomial is squared and adding the two terms will flip the sign of the binomial.
Be aware that arclength usually has a difficult function to integrate. Most integrable functions look like the above where a binomial is squared and adding the two terms will flip the sign of the binomial.
Answer:
she should add a bus , because u need to have enough buses for all students, u cant just leave some behind
Step-by-step explanation:
I see no table so i can’t awnser it plz post one with it thanks
Answer: 13.18
Step-by-step explanation:
Let’s say it takes time t hours for the interception.
In that time the carrier travels 28t nm west and the helicopter 130t nm.
Now we use the sine rule to find the angle x which lies between the distance 175 and 130t.
sin(x)/28t=sin35/130t. So sin(x)=28sin35/130=14sin35/65=0.1235 and x=7.0964 degrees.
Therefore the helicopter should use a bearing of 35+7.0964=42.0964 degrees north of east or 47.9 degrees east of north approx.