Using the binomial distribution, it is found that there is a 0.8295 = 82.95% probability that at least 5 received a busy signal.
<h3>What is the binomial distribution formula?</h3>
The formula is:


The parameters are:
- x is the number of successes.
- n is the number of trials.
- p is the probability of a success on a single trial.
In this problem:
- 0.54% of the calls receive a busy signal, hence p = 0.0054.
- A sample of 1300 callers is taken, hence n = 1300.
The probability that at least 5 received a busy signal is given by:

In which:
P(X < 5) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4).
Then:






Then:
P(X < 5) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) = 0.0009 + 0.0062 + 0.0218 + 0.0513 + 0.0903 = 0.1705.

0.8295 = 82.95% probability that at least 5 received a busy signal.
More can be learned about the binomial distribution at brainly.com/question/24863377
#SPJ1
Ahh i hope im in time to help!
The answer is C, 46
Hope this helped pls mark be brainliest!!!
Answer:
<h3>40.77 is ur answer </h3>
Step-by-step explanation:
<h3>plz mark as brainliast</h3>
Basically degrees of freedom are related to sample size (n-1). If the df increases, it also stands that the sample size is increasing; the graph of the t-distribution will have skinnier tails, pushing the critical value towards the mean.
Answer:
No
Step-by-step explanation:
Rational numbers are those that can be represented in a fraction form.
2.12359.... cannot be represented in a fraction form.
So, it is NOT a rational number