False. Mass doesn't change in relation to something's location, only weight does.
The object is balanced against standard units of mass
Answer
Operons are cluster of coordinated genes, including structural genes, an operator gene, and a regulatory gene.
Explanation:
In the The repressible operons, The transcription is usually on and repressor is in inactive form, So the specific genes are transcribed. While a regulatory molecule act as corepressor and binds to repressor protein to activate it. The repressor protein cause the inactivation of repressible operon (as the name indicate). E.g., Tryptophan Repress the trp operon.
A high level of product act as regulatory molecule (Corepressor) and turn off the operon, So anabolic pathways or synthesis of essential components are controlled by repressible operon.
In the Inducible operons, the transcription is usually off and repressor is in active form. So there is no transcription of genes. Specific Metabolite cause the activation of operon e.g lactose cause the induction of lac operon.
As a metabolite induces the operon, So they control the Metabolic pathways or breakdown of a neutrient.
Answer:
The correct answer is option A. "the temporary hyperpolarization of the axon membrane following the action potential spike".
Explanation:
Action potentials, also known as "spikes" or "impulses", are electric impulses that neurons use to send information from the cell's body down to the axon. The impulses are created when ions travel across the neuron's membrane creating a depolarization current. This depolarization current is responsible for an temporary hyperpolarization of the axon membrane following the action potential spike. When neurons are hyperpolarized they are not able to produce another action potential. In consequence, actions potentials move in one direction along the neuron away from the cell body, as well as, adjacent locations go trough similar depolarization processes.
Answer:
they are Na+, K+ and Ca2+ ion channels.
Explanation:
Ionotropic acetylcholine receptors are also called nicotinic acetylcholine receptors because beside acetylcholine (Ch) they respond to nicotine. These receptors are primary receptors in muscle for motor nerve-muscle communication that controls muscle contraction.
Two molecules of ACh are required for receptor to open. Since the receptors are linked to ion channels, the channels open. Opening of the channel allows positively charged ions to move across it: sodium enters the cell and potassium exits.