1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
timofeeve [1]
2 years ago
12

Herman has $18. He earns $8 for 1 hour (h) of tutoring. He wants to buy a skateboard for $90.

Mathematics
1 answer:
CaHeK987 [17]2 years ago
7 0

Answer:

i was so close

Step-by-step explanation:

You might be interested in
Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of
tresset_1 [31]

Because I've gone ahead with trying to parameterize S directly and learned the hard way that the resulting integral is large and annoying to work with, I'll propose a less direct approach.

Rather than compute the surface integral over S straight away, let's close off the hemisphere with the disk D of radius 9 centered at the origin and coincident with the plane y=0. Then by the divergence theorem, since the region S\cup D is closed, we have

\displaystyle\iint_{S\cup D}\vec F\cdot\mathrm d\vec S=\iiint_R(\nabla\cdot\vec F)\,\mathrm dV

where R is the interior of S\cup D. \vec F has divergence

\nabla\cdot\vec F(x,y,z)=\dfrac{\partial(xz)}{\partial x}+\dfrac{\partial(x)}{\partial y}+\dfrac{\partial(y)}{\partial z}=z

so the flux over the closed region is

\displaystyle\iiint_Rz\,\mathrm dV=\int_0^\pi\int_0^\pi\int_0^9\rho^3\cos\varphi\sin\varphi\,\mathrm d\rho\,\mathrm d\theta\,\mathrm d\varphi=0

The total flux over the closed surface is equal to the flux over its component surfaces, so we have

\displaystyle\iint_{S\cup D}\vec F\cdot\mathrm d\vec S=\iint_S\vec F\cdot\mathrm d\vec S+\iint_D\vec F\cdot\mathrm d\vec S=0

\implies\boxed{\displaystyle\iint_S\vec F\cdot\mathrm d\vec S=-\iint_D\vec F\cdot\mathrm d\vec S}

Parameterize D by

\vec s(u,v)=u\cos v\,\vec\imath+u\sin v\,\vec k

with 0\le u\le9 and 0\le v\le2\pi. Take the normal vector to D to be

\vec s_u\times\vec s_v=-u\,\vec\jmath

Then the flux of \vec F across S is

\displaystyle\iint_D\vec F\cdot\mathrm d\vec S=\int_0^{2\pi}\int_0^9\vec F(x(u,v),y(u,v),z(u,v))\cdot(\vec s_u\times\vec s_v)\,\mathrm du\,\mathrm dv

=\displaystyle\int_0^{2\pi}\int_0^9(u^2\cos v\sin v\,\vec\imath+u\cos v\,\vec\jmath)\cdot(-u\,\vec\jmath)\,\mathrm du\,\mathrm dv

=\displaystyle-\int_0^{2\pi}\int_0^9u^2\cos v\,\mathrm du\,\mathrm dv=0

\implies\displaystyle\iint_S\vec F\cdot\mathrm d\vec S=\boxed{0}

8 0
3 years ago
Suppose h(t) = -4t^2+ 11t + 3 is the height of a diver above the water in
nadezda [96]

Answer:

11/4 seconds

Step-by-step explanation:

We can see from the given equation that the height at the diving board is h = 3.

This is because the h(t) equation has that +3 at the end, which denotes the initial height of the diver, the height when he is standing on the board before jumping.

To find where h(t) = 3 is true, we need to set h(t) equal to 3 and solve for t.

h(t) = 3

h(t) = -4t^2 + 11t + 3 = 3

-4t^2 + 11t + 3 - 3 = 0

-4t^2 + 11t = 0

t*(-4t + 11) = 0

so h(t) = 3 when t = 0 and when t = 11/4 sec

we already know that at t = 0 the height is 3, it is the initial height given from the equation, so we want to use the other solution for t.

the diver is back at the height of the diving board at t = 11/4 sec

6 0
2 years ago
Read 2 more answers
Q3) Explain the Error: When Rashed found the difference -11 - (-4), he got-
lina2011 [118]
He maybe accidently added both of thm .
But if we difference we get 7.
Because - and - =+
So
-11+4=7.
6 0
3 years ago
Find the roots of the following equations.<br> a) 4x+9=34<br> b) (x-4)(x+2)=0<br> c) 2x^2-6x+4=0
Masteriza [31]
A. 4x + 9 = 34
    <u>      - 9   - 9</u>
          <u>4x</u> = <u>25</u>
           4      4
            x = 6.25

B. (x - 4)(x + 2) = 0
    x - 4 = 0    U    x + 2 = 0
    <u>  + 4 + 4</u>          <u>    - 2  - 2</u>
         x = 4                 x = -2

C.          2x² - 6x + 4 = 0
    2(x²) - 2(3x) + 2(2) = 0
            <u>2(x² - 3x + 2)</u> = <u>0</u>
                      2             2
                x² - 3x + 2 = 0
                x = <u>-(-3) +/- √((-3)² - 4(1)(2))</u>
                                      2(1)
                x = <u>3 +/- √(9 - 8)</u>
                               2
                x = <u>3 +/- √(1)
</u>                            2<u>
</u>                x =<u> 3 +/- 1
</u>                          2
                x = <u>3 + 1</u>    U    x = <u>3 - 1</u>
                         2                      2
                x = <u>4</u>                 x = <u>2</u>
                      2                       2
                x = 2                 x = 1
<u />
7 0
3 years ago
How many fractions are equivalent to 4/5 explain
Reptile [31]
There are alot it depeneds of what is the number :)
5 0
3 years ago
Other questions:
  • Student made five tetrahedrons, a three dimensional figure with four triangular faces and labeled the faces 1-4. use an equation
    11·2 answers
  • If a = 0.3 with a line over 3 and b = 0.5 with a line over 5, what is the value of a + b?
    8·2 answers
  • Three more than twice the sum of 7 and a number is 25 find the number
    11·2 answers
  • What is -104 = 8x. Answer please
    5·2 answers
  • Which one A or B or C help pls!
    7·2 answers
  • I'm confused math 7th grade pls help im confused
    15·1 answer
  • 1. Is a Square a rectangle?(Always, Never, Sometimes. Are all the answers you can say for these)
    12·1 answer
  • Can anyone help me please on this function.
    14·1 answer
  • Cheena has 3/4 yard of fabric. She cuts the fabric into pieces that are each 1/8yardlong. How many pieces of fabric does cheena
    6·1 answer
  • Please answer this question!!
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!