169 because you have to add the angles from the inside and the firat angke is 90
Y1 is the simplest parabola. Its vertex is at (0,0) and it passes thru (2,4). This is enough info to conclude that y1 = x^2.
y4, the lower red graph, is a bit more of a challenge. We can easily identify its vertex, which is (-4,0), and several points on the grah, such as (2,-3).
Let's try this: assume that the general equation for a parabola is
y-k = a(x-h)^2, where (h,k) is the vertex. Subst. the known values,
-3-(-4) = a(2-0)^2. Then 1 = a(2)^2, or 1 = 4a, or a = 1/4.
The equation of parabola y4 is y+4 = (1/4)x^2
Or you could elim. the fraction and write the eqn as 4y+16=x^2, or
4y = x^2-16, or y = (1/4)x - 4. Take your pick! Hope this helps you find "a" for the other parabolas.
Answer:
All three.
Step-by-step explanation:
All three of these ratios are equivalent to 15:5. Here's how:
Let's look at the first ratio, 9:3. Did you notice something common? 3 x 3 = 9. 9/3 = 3. 5 x 3 = 15. 15/3 = 5. Both of these numbers are divisible by 3, so these ratios are equivalent.
Second. 6:2. 2 x 3 = 6. 6/3 = 2. 5 x 3 = 15. 15/3 = 5. See the similarity? The same applies to the next problem, number three, although it does slightly differentiate.
Third, 3:1. See, here, since the ratio is smaller than the problem, we can't multiply, since this ratio is smaller than the original number. But, it's still the same thing. A ratio is a number that compares a value to another value. This means that 3:1 is 3 compared to one. Now, let me clarify. 15:5. 3:1. These are the exact same values, except they are just written in a different form, and simplified. Since 5 x 3 = 15, we know that we can divide 15 evenly by 5, which makes it 3, and divide 5 evenly by 5, which equals one. So here we have our answer for the third problem. 5:1.
Ratios are basically division, except simplified. Every single ratio problem works this way. Once you get the hang of it, it's immensely easy. Hope this helped!
Answer:
12
Step-by-step explanation:
Using the 30-60-90 triangle formula side AB would be double of side CB.
Answer:m=d/V
Step-by-step explanation:
To solve for m, you must divide V from each side. Leaving you with m=d/V. Hope this helped:)