Answer:
I believe that the best answer to the question: How is it that the same tertiary structure of a protein can result from different primary structures? Would be, B: None of the above.
Explanation:
This is probably the best choice from all the ones in the list simply because due to specific portions of the other answers they make the statement incorrect.
It will help to remember this: proteins have primary, secondary and tertiary structures because when they first emerge from the trascription process from mRNA, they are a simple string where the most important factor is the sequence of aminoacids. It is this sequence which will determine the folding factor. However, there is another factor that must always be kept in mind; environmental factors (temperature, medium where the protein is, as well as location where it is being produced) will also play a role on how the folding will happen and on which of the aminoacids.
The evolvement of a protein chain from its primary, to its secondary and then tertiary shape (the only functional, or known as native state) depends on which of the aminoacids in a specific sequence has the necessary elements to form bonds (hydrogen bonds) with others and thus start the folding process.
Answer:
a. osteoblasts
b. osteoid
Explanation:
Osteoblasts are the fundamental cell of bone tissue. They are the cells that synthesize the bone matrix called osteoid from which it is made from the skeleton of bone fish, to the skeleton of humans. Since the bone skeleton is an evolutionary paraphiletic characteristic (it is present in several taxonomic groups that have evolved from the same ancestor).
Osteoblasts are responsible for the development and growth of bones during the juvenile stage of individuals and are also responsible for maintaining adult bone and regenerating bone when it breaks.
Osteogenesis is the process of differentiation of osteoblasts. The cells from which osteoblasts differ are called osteoprogenitors. The differentiation of osteoprogenitor cells, which come from the mesoderm, periosteum or bone marrow, is induced by growth factors called bone morphogenetic proteins (BMPs), capable of inducing the growth of bone, cartilage or connective tissue. When an osteoprogenitor cell receives a BMP signal, it quickly begins to express the genes to generate collagen, osteonectin and alkaline phosphatase, among other compounds necessary for bone growth. When the bone grows, it ends up wrapping some of the osteoblasts and they lose their ability to replicate, at that time they are dedicated to bone maintenance and not to their synthesis and are called osteocytes.