Answer: Addie weighs 4 ounces
Missy weighs 14 ounces
Corky weighs 8 ounces
Step-by-step explanation:
Let a represent the weight of Addie.
Let m represent the weight of Missy.
Let c represent the weight of Corky.
Together Addie and Missy weigh 18 ounces. This means that
a + m = 18 - - - - - - - - - 1
Missy and Corky weigh 22 ounces. This means that
m + c = 22
m = 22 - c - - - - - - - - - - 2
Addie and Corky weigh 12 ounces. This means that
a + c = 12
a = 12 - c - - - - - - - - - - - 3
Substituting equation 2 and equation 3 into equation 1, it becomes
22 - c + 12 - c = 18
34 - 2c = 18
- 2c = 18 - 34 = - 16
c = - 16/ - 2 = 8
Substituting c = 8 into equation 2, it becomes
m = 22 - 8
m = 14
Substituting c = 8 into equation 3, it becomes
a = 12 - 8
a = 4
Answer:
.091651514m
Step-by-step explanation:
The area of a square is found by
A = s^2 where s is the side length
.0084 = s^2
Take the square root of each side

.091651514 = s
Answer:
a. 12 feet b. 12 feet 0.5 inches c. 8.33 %
Step-by-step explanation:
a. How far out horizontally on the ground will it protrude from the building?
Since the rise to run ratio is 1:12 and the building is 12 inches off the ground, let x be the horizontal distance the ramp protrudes.
So, by ratios rise/run = 1/12 = 12/x
1/12 = 12/x
x = 12 × 12
x = 144 inches
Since 12 inches = 1 foot, 144 inches = 144 × 1 inch = 144 × 1 foot/12 inches = 12 feet
b. How long should the ramp be?
The length of the ramp, L is gotten from Pythagoras' theorem since the ramp is a right-angled triangle with sides 12 inches and 144 inches respectively.
So, L = √(12² + 144²)
= √[12² + (12² × 12²)]
= 12√(1 + 144)
= 12√145
= 12 × 12.042
= 144.5 inches
Since 12 inches = 1 foot, 144.5 inches = 144 × 1 inch + 0.5 inches = 144 × 1 foot/12 inches + 0.5 inches = 12 feet 0.5 inches
c. What percent grade is the ramp?
The percentage grade of the ramp = rise/run × 100 %
= 12 inches/144 inches × 100 %
= 1/12 × 100 %
= 0.0833 × 100 %
= 8.33 %
6/10= 3/5
Or 6/10=6/10
Or 6/10= .6
Answer:
y = 2x + 4
Step-by-step explanation:
the equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
calculate m using the slope formula
m = 
with (x₁, y₁ ) = (- 2, 0) and (x₂, y₂ ) = ( 0, 4) ← 2 points on the line
m =
=
=
= 2
the line crosses the y- axis at (0, 4 ) ⇒ c = 4
y = 2x + 4 ← equation of line