1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gayaneshka [121]
3 years ago
13

Which of these is the BEST source of stem cells and minimizes the risk associated with stem cell transplantation?

Biology
1 answer:
stira [4]3 years ago
7 0

Answer:

B. Stem cells preserved from the umbilical cord of the person.

Explanation:

You might be interested in
Arrange these statements in the right order to describe process of inhalation.
julsineya [31]

Answer:

1,5,2,3,4

Explanation:

I'm not sure about this, so take this answer with a grain of salt. I think you would fill in the blanks like this: 1,5,2,3,4.

7 0
2 years ago
The amount of sun energy reaching Earth that reflects back into space is about one
Veseljchak [2.6K]
The answer is c. last time i had that and my teacher said it was c


4 0
2 years ago
Which of the following would disappear first in an estuary was destroyed?
Eduardwww [97]

a-shellfish is your answer

6 0
3 years ago
6. Which of the following has the lowest cost of production of recombinant proteins?
mina [271]

Answer:

Bacteria

Explanation:

Bacteria constitutes large group of unicellular organisms that lacks membrane bound organelles and constitute cell wall. Bacteria are used for the production of recombinant proteins.

Bacteria can be selected easily for the recombinant protein formation. The plasmid of bacteria is helpful for the integration of desired genes and the production of protein. The bacteria culture can be maintained easily in the laboratory. The different strains of bacteria with different traits can be used for the production of different recombinant proteins at low cost.

Thus, the correct answer is option (1).

6 0
3 years ago
Describe how blood is pumped and circulated through the body. Include the roles of the various chambers of the heart, the major
Korvikt [17]

The heart is a pump, usually beating about 60 to 100 times per minute. With each heartbeat, the heart sends blood throughout our bodies, carrying oxygen to every cell. After delivering the oxygen, the blood returns to the heart. The heart then sends the blood to the lungs to pick up more oxygen. This cycle repeats over and over again.

The circulatory system is made up of blood vessels that carry blood away from and towards the heart. Arteries carry blood away from the heart and veins carry blood back to the heart.

The circulatory system carries oxygen, nutrients, and hormones to cells, and removes waste products, like carbon dioxide. These roadways travel in one direction only, to keep things going where they should.

The heart has four chambers — two on top and two on bottom:

The two bottom chambers are the right ventricle and the left ventricle. These pump blood out of the heart. A wall called the interventricular septum is between the two ventricles.

The two top chambers are the right atrium and the left atrium. They receive the blood entering the heart. A wall called the interatrial septum is between the atria.

The atria are separated from the ventricles by the atrioventricular valves:

The tricuspid valve separates the right atrium from the right ventricle.

The mitral valve separates the left atrium from the left ventricle.

Two valves also separate the ventricles from the large blood vessels that carry blood leaving the heart:

The pulmonic valve is between the right ventricle and the pulmonary artery, which carries blood to the lungs.

The aortic valve is between the left ventricle and the aorta, which carries blood to the body.

What Are the Parts of the Circulatory System?

Two pathways come from the heart:

The pulmonary circulation is a short loop from the heart to the lungs and back again.

The systemic circulation carries blood from the heart to all the other parts of the body and back again.

In pulmonary circulation:

The pulmonary artery is a big artery that comes from the heart. It splits into two main branches, and brings blood from the heart to the lungs. At the lungs, the blood picks up oxygen and drops off carbon dioxide. The blood then returns to the heart through the pulmonary veins.

In systemic circulation:

Next, blood that returns to the heart has picked up lots of oxygen from the lungs. So it can now go out to the body. The aorta is a big artery that leaves the heart carrying this oxygenated blood. Branches off of the aorta send blood to the muscles of the heart itself, as well as all other parts of the body. Like a tree, the branches gets smaller and smaller as they get farther from the aorta.

At each body part, a network of tiny blood vessels called capillaries connects the very small artery branches to very small veins. The capillaries have very thin walls, and through them, nutrients and oxygen are delivered to the cells. Waste products are brought into the capillaries.

Capillaries then lead into small veins. Small veins lead to larger and larger veins as the blood approaches the heart. Valves in the veins keep blood flowing in the correct direction. Two large veins that lead into the heart are the superior vena cava and inferior vena cava. (The terms superior and inferior don't mean that one vein is better than the other, but that they're located above and below the heart.)

Once the blood is back in the heart, it needs to re-enter the pulmonary circulation and go back to the lungs to drop off the carbon dioxide and pick up more oxygen.

How Does the Heart Beat?

The heart gets messages from the body that tell it when to pump more or less blood depending on a person's needs. For example, when you're sleeping, it pumps just enough to provide for the lower amounts of oxygen needed by your body at rest. But when you're exercising, the heart pumps faster so that your muscles get more oxygen and can work harder.

How the heart beats is controlled by a system of electrical signals in the heart. The sinus (or sinoatrial) node is a small area of tissue in the wall of the right atrium. It sends out an electrical signal to start the contracting (pumping) of the heart muscle. This node is called the pacemaker of the heart because it sets the rate of the heartbeat and causes the rest of the heart to contract in its rhythm.

4 0
3 years ago
Other questions:
  • Ahmed and Gavin are playing both chess and checkers. The probability of Ahmed winning the chess game is
    15·2 answers
  • 1. How is the process of photosynthesis central to sustaining life on Earth?
    8·1 answer
  • What fills up the space inside a cell?
    8·2 answers
  • Mutations can occur in the chromosomes of all types of cells. mutations that are passed on to offspring must occur in
    11·2 answers
  • List one property that water and oil do not share.
    8·1 answer
  • What might be the consequences of your choice? <br> • Political:<br> • Economic:<br> • Social:
    8·2 answers
  • Write at least a 2 paragraph answer. brianlist to whoever writes two-paragraph for both answer
    11·1 answer
  • Which is a way for the body to conserve water during periods of heavy sweating?
    7·1 answer
  • Why do bans on ivory trade not stop elephants<br> from being slaughtered?
    14·1 answer
  • The scientific method is something you probably use in your life more often than you realize, often without even thinking of it!
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!