It will take exactly 4 years for these trees to be the same height
Step-by-step explanation:
A gardener is planting two types of trees:
- Type A is 3 feet tall and grows at a rate of 7 inches per year
- Type B is 5 feet tall and grows at a rate of 1 inches per year
We need to find in how many years it will take for these trees to be the
same height
Assume that it will take x years for these trees to be the same height
The height of a tree = initial height + rate of grow × number of years
Type A:
∵ The initial height = 3 feet
∵ 1 foot = 12 inches
∴ The initial height = 3 × 12 = 36 inches
∵ The rate of grows = 7 inches per year
∵ The number of year = x
∴ = 36 + (7) x
∴ = 36 + 7 x
Type B:
∵ The initial height = 5 feet
∴ The initial height = 5 × 12 = 60 inches
∵ The rate of grows = 1 inches per year
∵ The number of year = x
∴ = 60 + (1) x
∴ = 60 + x
Equate and
∴ 36 + 7 x = 60 + x
- Subtract x from both sides
∴ 36 + 6 x = 60
- Subtract 36 from both sides
∴ 6 x = 24
- Divide both sides by 6
∴ x = 4
∴ The two trees will be in the same height in 4 years
It will take exactly 4 years for these trees to be the same height
Learn more:
You can learn more about the rate in brainly.com/question/10712420
#LearnwithBrainly
Give me a minute. I’m trying to solve
Answer:
<h2>x = 12</h2><h2 />
Step-by-step explanation:
2x + 5 = 3x - 7
5 + 7 = 3x - 2x
12 = x
Answer:
3
Step-by-step explanation:
just plug in 9 to b
9x2=18 18-15=3