Answer:
(A) Angular speed 40 rad/sec
Rotation = 50 rad
(b) 37812.5 J
Explanation:
We have given moment of inertia of the wheel 
Initial angular velocity of the wheel 
Angular acceleration 
(a) We know that 
We have given t = 2 sec
So 
Now 
(b) After 3 sec 
We know that kinetic energy is given by 
(1) Changing Fahrenheit to Celsius:
The formula used to convert from Fahrenheit to Celsius is as follows:
C = <span>(F - 32) * 5/9
</span>We are given that F=200, substitute in the above formula to get the corresponding temperature in Celsius as follows:
C = (200-32) * (5/9) = 93.333334 degrees Celsius
(2) Changing the Fahrenheit to kelvin:
The formula used to convert from Fahrenheit to kelvin is as follows:
K = <span>(F - 32) * 5/9 + 273.15
</span>We are given that F = 200. substitute in the above formula to get the corresponding temperature in kelvin as follows:
K = (200-32)*(5/9) + 273.15 = 366.483334 degrees kelvin
Answer:
The correct answer is "6666.67 N".
Explanation:
The given values are:
Mass,
m = 0.100
Relative speed,
v = 4.00 x 10³
time,
t = 6.00 x 10⁻⁸
As we know,
⇒ 
On substituting the given values, we get
⇒ 
⇒ 
Answer:
Explanation:
A proton of charge
q=+1.609×10^-19C
Orbit a radius of 12cm
r=0.12m
Magnetic Field of 0.31T
Angle between velocity and field is 90°
a. Because the magnetic force F supplies the centripetal force Fc.
The magnitude of the magnetic force F on a charge q moving at a speed v in a magnetic field of strength B is given by
F = qvB sin θ
And the centripetal force is given as
Fc=mv²/r
Where m is mass of proton
m=1.673×10^-27kg
Then, F=Fc
qvB sin θ=mv²/r
qBSin90=mv/r
rqB=mv
Then, v=rqB/m
v=0.12×1.609×10^-19×0.31/1.673×10^-23
v=3577692.78m/s
v=3.58×10^6m/s
b. Since,
F=qVBSin90
F=1.609×10^-19×3.58×10^6×0.31
F=1.785×10^-13 N.
Winds blowing across the ocean surface push water away. Water then rises up from beneath the surface to replace the water that was pushed away. This process is known as “upwelling.”
Upwelling occurs in the open ocean and along coastlines. The reverse process, called “downwelling,” also occurs when wind causes surface water to build up along a coastline and the surface water eventually sinks toward the bottom.
Water that rises to the surface as a result of upwelling is typically colder and is rich in nutrients. These nutrients “fertilize” surface waters, meaning that these surface waters often have high biological productivity. Therefore, good fishing grounds typically are found where upwelling is common.