I would say by putting two fingers under your chin or putting two fingers on the back of your wrist, hope i helped ! :)
The ball's vertical velocity at the time it just passes over the goal is 0 m/s. Its initial vertical velocity is unknown and we denote it by
, where
here is the ball's initial speed. Vertically, the only force acting on the ball is gravity, which attributes a downward acceleration of 9.8 m/s^2. We expect the maximum height achieved by the ball to be 2.4 m, so we can find the initial speed by solving


Ammonia because it doesn't have nitrogen
(a) This is a freefall problem in disguise - when the ball returns to its original position, it will be going at the same speed but in the opposite direction. So the ball's final velocity is the negative of its initial velocity.
Recall that

We have
, so that

(b) The speed of the ball at the start and at the end of the roll are the same 8 m/s, so the average speed is also 8 m/s.
(c) The ball's average velocity is 0. Average velocity is given by
, and we know that
.
(d) The position of the ball
at time
is given by

Take the starting position to be the origin,
. Then after 6 seconds,

so the ball is 42 m away from where it started.
We're not asked to say in which direction it's moving at this point, but just out of curiosity we can determine that too:

Since the velocity is positive, the ball is still moving up the incline.
Answer:
It's C because if you were trying to put it at rest that means you would put it on a Balanced surfest