1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
STatiana [176]
4 years ago
15

Solar cells are often coated with a transparent, thin film of silicon monoxide (n = 1.45) to minimize reflective losses from the

surface. Suppose a silicon solar cell (n = 3.5) is coated with a thin film of silicon monoxide. Determine the minimum film thickness that produces the least reflection at a wavelength of 550 nm.
Physics
1 answer:
Alinara [238K]4 years ago
7 0

Answer:

94.82 nm

Explanation:

We have given that wavelength \lambda=550\ nm

We have to find the minimum film thickness that produces the least reflection

minimum thickness is given by t=\frac{\lambda }{4n}

here n is given n=1.45

so minimum thickness t=\frac{550 }{4\times 1.45}=94.82\ nm

so the minimum film thickness will be 94.82 nm

You might be interested in
A uniform disk with mass 35.2 kg and radius 0.200 m is pivoted at its center about a horizontal, frictionless axle that is stati
Sergio [31]

Answer:

a) v = 1.01 m/s

b) a = 5.6 m/s²

Explanation:

a)

  • If the disk is initially at rest, and it is applied a constant force tangential to the rim, we can apply the following expression (that resembles Newton's 2nd law, applying to rigid bodies instead of point masses) as follows:

       \tau = I * \alpha  (1)

  • Where τ is the external torque applied to the body, I is the rotational inertia of the body regarding the axis of rotation, and α is the angular acceleration as a consequence of the torque.
  • Since the force is applied tangentially to the rim of the disk, it's perpendicular to the radius, so the torque can be calculated simply as follows:
  • τ = F*r (2)
  • For a solid uniform disk, the rotational inertia regarding an axle passing through its center  is just I = m*r²/2 (3).
  • Replacing (2) and (3) in (1), we can solve for α, as follows:

       \alpha = \frac{2*F}{m*r} = \frac{2*34.5N}{35.2kg*0.2m} = 9.8 rad/s2 (4)

  • Since the angular acceleration is constant, we can use the following kinematic equation:

        \omega_{f}^{2}  - \omega_{o}^{2} = 2*\Delta \theta * \alpha (5)

  • Prior to solve it, we need to convert the angle rotated from revs to radians, as follows:

       0.2 rev*\frac{2*\pi rad}{1 rev} = 1.3 rad (6)

  • Replacing (6) in (5), taking into account that ω₀ = 0 (due to the disk starts from rest), we can solve for ωf, as follows:

       \omega_{f} = \sqrt{2*\alpha *\Delta\theta} = \sqrt{2*1.3rad*9.8rad/s2} = 5.1 rad/sec (7)

  • Now, we know that there exists a fixed relationship the tangential speed and the angular speed, as follows:

        v = \omega * r (8)

  • where r is the radius of the circular movement. If we want to know the tangential speed of a point located on the rim of  the disk, r becomes the radius of the disk, 0.200 m.
  • Replacing this value and (7) in (8), we get:

       v= 5.1 rad/sec* 0.2 m = 1.01 m/s (9)

b)    

  • There exists a fixed relationship between the tangential and the angular acceleration in a circular movement, as follows:

       a_{t} = \alpha * r (9)

  • where r is the radius of the circular movement. In this case the point is located on the rim of the disk, so r becomes the radius of the disk.
  • Replacing this value and (4), in (9), we get:

       a_{t}  = 9.8 rad/s2 * 0.200 m = 1.96 m/s2 (10)

  • Now, the resultant acceleration of a point of the rim, in magnitude, is the vector sum of the tangential acceleration and the radial acceleration.
  • The radial acceleration is just the centripetal acceleration, that can be expressed as follows:

       a_{c} = \omega^{2} * r  (11)

  • Since we are asked to get the acceleration after the disk has rotated 0.2 rev, and we have just got the value of the angular speed after rotating this same angle, we can replace (7) in (11).
  • Since the point is located on the rim of the disk, r becomes simply the radius of the disk,, 0.200 m.
  • Replacing this value and (7) in (11) we get:

       a_{c} = \omega^{2} * r   = (5.1 rad/sec)^{2} * 0.200 m = 5.2 m/s2 (12)

  • The magnitude of the resultant acceleration will be simply the vector sum of the tangential and the radial acceleration.
  • Since both are perpendicular each other, we can find the resultant acceleration applying the Pythagorean Theorem to both perpendicular components, as follows:

       a = \sqrt{a_{t} ^{2} + a_{c} ^{2} } = \sqrt{(1.96m/s2)^{2} +(5.2m/s2)^{2} } = 5.6 m/s2 (13)

6 0
3 years ago
6
asambeis [7]

Answer:

TAJUK

Explanation:

Sebab saya suka makan ayam goreng, esok saya nak pesan daripada kedai pak abu, terima kasih bosku

6 0
3 years ago
Which best describes why Keplers observation of planetary motion is a law instead of a theory
svet-max [94.6K]

Kepler's first law - sometimes referred to as the law of ellipses - explains that planets are orbiting the sun in a path described as an ellipse. An ellipse can easily be constructed using a pencil, two tacks, a string, a sheet of paper and a piece of cardboard. Tack the sheet of paper to the cardboard using the two tacks. Then tie the string into a loop and wrap the loop around the two tacks. Take your pencil and pull the string until the pencil and two tacks make a triangle (see diagram at the right). Then begin to trace out a path with the pencil, keeping the string wrapped tightly around the tacks. The resulting shape will be an ellipse. An ellipse is a special curve in which the sum of the distances from every point on the curve to two other points is a constant. The two other points (represented here by the tack locations) are known as the foci of the ellipse. The closer together that these points are, the more closely that the ellipse resembles the shape of a circle. In fact, a circle is the special case of an ellipse in which the two foci are at the same location. Kepler's first law is rather simple - all planets orbit the sun in a path that resembles an ellipse, with the sun being located at one of the foci of that ellipse.


5 0
3 years ago
Read 2 more answers
An 80.0 kg skier slides down a hill shaped as shown. Assume
umka21 [38]

The height above the ground from where the skier start is 11.5 m.

<h3>Conservation of energy</h3>

The height above the ground from where the skier start is determined by applying the principle of conservation of energy as shown below;

P.E = K.E

mgh = ¹/₂mv²

gh = ¹/₂v²

h = \frac{v^2}{2g} \\\\h = \frac{15^2}{2 \times 9.8} \\\\h = 11.5 \ m

Thus, the height above the ground from where the skier start is 11.5 m.

Learn more about conservation of energy here: brainly.com/question/166559

8 0
3 years ago
Which statement explains the polarity of a water molecule?
timofeeve [1]

Answer:

D. The oxygen side is partially negative because electrons are pulled toward the oxygen side.

Explanation:

The water molecule is polar by the virtue of covalent bonds and the hydrogen bonds within and between its molecule.

The oxygen side is partially negative because the electrons are pulled toward the oxygen side.

Between oxygen and hydrogen that makes up the water molecule, oxygen is more electronegative.

An electronegative atom has more affinity for electrons. Since the electrons in the molecule of water is shared between hydrogen and oxygen, the more electronegative specie which is water draws the electron more to itself.

This leaves a net negative charge on the oxygen atom.

8 0
2 years ago
Other questions:
  • What is frequency? <br><br> (P.S. please help)
    6·2 answers
  • A 100-turn, 3.0-cm-diameter coil is at rest in a horizontal plane. A uniform magnetic field 60%u2218 away from vertical increase
    10·1 answer
  • Which statement best describes the difference(s) between atoms and molecules?
    13·2 answers
  • Why is heat acclimatization important?
    14·1 answer
  • The atoms of a molecule come from two or more?
    7·2 answers
  • What equation gives the position at a specific time for an object with constant acceleration?
    6·1 answer
  • Explain why the sound produced by every vibrating body cannot be heard by us ?​
    15·1 answer
  • In the figure, a proton is projected horizontally midway between two parallel plates that are separated by 0.50 cm, and are 5.60
    11·1 answer
  • A.
    7·1 answer
  • Suppose the ski patrol lowers a rescue sled and victim, having a total mass of 90.0 kg, down a p slope at constant speed, as sho
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!