Answer:
A. 243 N
Explanation:
Friction is the force that opposes the relative motion between systems that are in contact.
This friction force that opposes the motion of the oak chest across the oak surface will be equal and opposite to that exerted by the woman.
First find the normal force which is the force that would point directly upwards to support weight of the block.
Normal force, N= mg where m is the mass of the chest and g is the acceleration due to gravity.
Given m=40 kg and g=9.80 m/s²
N force=40×9.80 =392N
Then find the force of friction which is given by the formula;
<em>F=μN where μ is friction coefficient for the oak chest and N is the normal force on the chest</em>
Given <em>μ</em>=0.620 and N force = 392 N then it will be;
F=0.620× 392 =243.04 N
Answer : 243 N
I don't think so as long as you make it apparent that the information comes the same source. So citing over and over again is unnecessary as long as it's clear that the information is from the same website or source. If you can't make it clear that they are from the same website source, it would a safe choice to continue to cite to avoid allegations of plagiarism.
Answer:

Explanation:
Assume that the distance travelled initially is d.
In order to stop the block you need some external force which is friction.
If we use the law of energy conservation:

a)
Looking at the formula you can see that the mass doesn't affect the distance travelled, as lng as the initial velocity is constant (Which indicates that the force must be higher to push the block to the same speed) therefore the distance is the same.
b) If the velocity is doubled, then the distance travelled is multiplied by 4, because the distance deppends on the square of the velocity.
Crushing pressure. Human bodies are used to air pressure. The air pressure in our lungs, ears and stomachs is the same as the air pressure outside of our bodies, which ensures that we don't get crushed. Our bodies are also flexible enough to cope when the internal and external pressures aren't exactly the same.
A wave is a rhythmic movement that carries energy through space or matter.