<em>Question:</em>
The area of the kite is 48 cm². What are the lengths of the diagonals PR and QS?
________
<em>Solution:</em>
You can split the kite into two isosceles triangles: PSR and PQR.
Assume that both diagonals intersect each other at the point O.
• Area of the triangle PSR:
m(PR) · m(OS)
A₁ = ————————
2
(x + x) · x
A₁ = ——————
2
2x · x
A₁ = ————
2
A₁ = x² (i)
• Area of the triangle PQR:
m(PR) · m(PQ)
A₂ = ————————
2
(x + x) · 2x
A₂ = ——————
2
2x · 2x
A₂ = ————
2
4x²
A₂ = ———
2
A₂ = 2x² (ii)
So the total area of the kite is
A = A₁ + A₂ = 48
Then,
x² + 2x² = 48
3x² = 48
48
x² = ———
3
x² = 16
x = √16
x = 4 cm
• Length of the diagonal PR:
m(PR) = x + x
m(PR) = 2x
m(PR) = 2 · 4
m(PR) = 8 cm
<span>• </span>Length of the diagonal SQ:
m(SQ) = x + 2x
m(SQ) = 3x
m(SQ) = 3 · 4
m(SQ) = 12 cm
I hope this helps. =)
Tags: <em>polygon area triangle plane geometry</em>
7x + 2 = -12
- 2 - 2
7x = -14
7 7
x = -2
Answer:
1/2 batch
Step-by-step explanation:
1/2=1
1/4=1/2
Hi , so without using any device or thing to get the answer I think that 75×5 equals 375 , now I'm going to check my answer , my answer is correct .What I always do is add , so basically I did this 75+75+75+75+75 =375.
Answer:
4(6a + 5)
Step-by-step explanation:
24a + 20
the greatest common factor of both terms is 4
4(6a + 5)