For AD:
AD=root((c-0)^2 + (d-0)^2)=root((c)^2 + (d)^2)
For BC:
BC=root(((b+c) - b)^2+(d-0)^2)=root((c)^2+(d)^2)
For AB:
AB=root((b-0)^2 + (0-0)^2)=root((b)^2 + (0)^2)=root((b)^2)
For CD:
CD=root((c-(b+c))^2 + (d-d)^2)
CD=root((b)^2 + (0)^2)
CD=root((b)^2)
Line 1:
Expanding the vertex form, we have
x² + 2·1.5x + 1.5² - 0.25 = x² +3x +2
Expanding the factored form, we have
x² +(1+2)x +1·2 = x² +3x +2
Comparing these to x² +3x +2, we find ...
• the three expressions are equivalent on Line 1
Line 2:
Expanding the vertex form, we have
x² +2·2.5x +2.5² +6.25 = x² +5x +12.5
Expanding the factored form, we have
x² +(2+3)x +2·3 = x² +5x +6
Comparing these to x² +5x +6, we find ...
• the three expressions are NOT equivalent on Line 2
The appropriate choice is
Line 1 only
N = 3 ( the next number is 3 plus the previous number
sequence formula = an = 3(n-1) +2
so for term the term that =59
59 = 3(n-1) +2
distribute:
59 = 3n -3+2
59 = 3n -1
60 = 3n
n = 60/3
n = 20
59 is the 20th term
Quartic is 4th degree
the factors of an equation with roots r1,r2 is
(x-r1)(x-r2)
4th degree
it could be
(x-r1)¹(x-r2)³ or
(x-r1)²(x-r2)² or
(x-r1)³(x-r2)¹
roots or zeroes at x=-1 and x=-2
(x-(-1)) and (x-(-2))
(x+1) and (x+2)
the function could be factored into
(x+1)¹(x+2)³ or
(x+1)²(x+2)² or
(x+1)³(x+2)¹
expanded would be
x⁴+7x³+18x²+20x+9 or
x⁴+6x³+13x²+12x+4 or
x⁴+5x³+9x²+7x+2
one of those is the answer
Answer:

Step-by-step explanation:
Blue Marbles =5
Pink Marbles =3
Total =3+5=8
Probability of drawing two marbles with replacement
=P(First Blue Marble AND Second Blue Marble)
=P(First Blue Marble) X P(Second Blue Marble)
