Answer:
A) is correct
Step-by-step explanation:
Answer: it will trave 56.89 meters before coming to rest.
Step-by-step explanation:
This is a geometric progression since the distance travelled (height) by the ball is reducing by a constant ratio, r. Since the number of times that the ball will bounce is infinite, then we would apply the formula for determining the sum of the terms in a geometric progression to infinity which is expressed as
S = a/(1 - r)
where
S = sum of the distance travelled by the ball
a = initial distance or height of the ball
r = common ratio
From the information given,
a = 128/9
r = (32/3)/(128/9) = 0.75
Therefore,
S = (128/9)/(1 - 0.75) = 56.89 meters
First we'll do two basic steps. Step 1 is to subtract 18 from both sides. After that, divide both sides by 2 to get x^2 all by itself. Let's do those two steps now
2x^2+18 = 10
2x^2+18-18 = 10-18 <<--- step 1
2x^2 = -8
(2x^2)/2 = -8/2 <<--- step 2
x^2 = -4
At this point, it should be fairly clear there are no solutions. How can we tell? By remembering that x^2 is never negative as long as x is real.
Using the rule that negative times negative is a positive value, it is impossible to square a real numbered value and get a negative result.
For example
2^2 = 2*2 = 4
8^2 = 8*8 = 64
(-10)^2 = (-10)*(-10) = 100
(-14)^2 = (-14)*(-14) = 196
No matter what value we pick, the result is positive. The only exception is that 0^2 = 0 is neither positive nor negative.
So x^2 = -4 has no real solutions. Taking the square root of both sides leads to
x^2 = -4
sqrt(x^2) = sqrt(-4)
|x| = sqrt(4)*sqrt(-1)
|x| = 2*i
x = 2i or x = -2i
which are complex non-real values
Answer:
I believe it would be - (n+4) x 2
Step-by-step explanation:
Answer:
A. Weather conditions
Step-by-step explanation: