Answer:
If the roots of an equation are x = -1 ± i, it means that the factorized form of that equation is: (x + 1 + i)(x+ 1 - i) = 0.
Using the distributive property, we have:
(x + 1 + i)(x+ 1 - i) = x^2 + x - ix + x + 1 - i + ix + i + 1
Combining like-terms and simplifying:
⇒ x^2 + x + x + 1 + 1 = x^2 + 2x + 2 = 0
Therefore, the stament is correct. If the roots of an equation are x = -1 ± i, then the equation is: x^2 + 2x + 2 = 0.
Answer:
Hence, the value of y is undefined.
Step-by-step explanation
from the property, log_a (b) = (log(a))/log(b).
The value log (-7) was not defined. So, the entire log value also not defined.
Hence, the value of y is undefined.
Just rotate it 90 degrees clockwise like this
Fill in each slot in the square with variables <em>a</em>, <em>b</em>, <em>c</em>, <em>d</em>, and <em>e</em>, in order from left-to-right, top-to-bottom. In a magic square, the sums across rows, columns, and diagonals all add up to the same number called the <em>magic sum</em>.
The magic sum is -3.9, since "diagonal 2" (bottom left to top right) has all the information we need:
3 + (-1.3) + (-5.6) = -3.9
Use this to find the remaining elements
<em>a</em> + <em>b</em> + (-5.6) = -3.9
<em>c</em> + (-1.3) + <em>d</em> = -3.9
3 + <em>e</em> + 0.02 = -3.9
<em>a</em> + <em>c</em> + 3 = -3.9
<em>b</em> + (-1.3) + <em>e</em> = -3.9
(-5.6) + <em>d</em> + 0.02 = -3.9
- diagonal 1 (top left to bottom right):
<em>a</em> + (-1.3) + 0.02 = -3.9
You will find
<em>a</em> = -2.62
<em>b</em> = 4.32
<em>c</em> = -4.28
<em>d</em> = 1.68
<em>e</em> = -6.92
21.5m
i think that may be the answer!!
hopefully this helped some?!!!