3pi/7 < pi/2 because 3/7 < 1/2, and pi/2 is a right angle. Conclusion: the angle opposite side a is an acute angle. In this situation the triangle could be a right triangle, in which case C would be true, but it does not have to be a right triangle, so don´t choose C. Similarly, it could be an acute triangle, in which case B would be true, but it does not have to be, so don´t choose B. Also, A says the angle opposite side a is obtuse, which is false. So don´t choose A. That leaves D, which says the angle opposite side a is acute, which we know is true. So the answer is <span>D. b^2 + c^2 > a^2</span>
Yes I can help you with the question you have displayed
Answer:
On a unit circle, the point that corresponds to an angle of
is at position
.
The point that corresponds to an angle of
is at position
.
Step-by-step explanation:
On a cartesian plane, a unit circle is
- a circle of radius
, - centered at the origin
.
The circle crosses the x- and y-axis at four points:
Join a point on the circle with the origin using a segment. The "angle" here likely refers to the counter-clockwise angle between the positive x-axis and that segment.
When the angle is equal to
, the segment overlaps with the positive x-axis. The point is on both the circle and the positive x-axis. Its coordinates would be
.
To locate the point with a
angle, rotate the
segment counter-clockwise by
. The segment would land on the positive y-axis. In other words, the
-point would be at the intersection of the positive y-axis and the circle. Its coordinates would be
.
Answer:
y = -cos(2x)
Step-by-step explanation:
Mean/mid line: y = 0
It's a negative cos, with period pi.
So, y = -cos(2x)
If it gives you your total, and another number, divide the 2
example:
25 • x = 75
75/25= 3
x=3