Answer:                                                                                                              The equation of the perpendicular line intersects the point (-5,1) is  y=x+6[/tex]
Step-by-step explanation:
step1:-
The standard form of slope - intercept form y=m x+c
Here m is called slope of the given line 
C is called the y- intercept of the given line
Given equation of the straight line y=-x+1
comparing  the slope - intercept form y=m x+c
here m= -1 and c=1
step2:-
The equation of the perpendicular line is 
 } =\frac{-1}{m} (x-x_{1} )[/tex]
} =\frac{-1}{m} (x-x_{1} )[/tex]
substitute m =  -1 and c =1 values  in equation



step3:- The equation of the perpendicular line intersects the point (-5,1) is
y=x+6[/tex]
<u>conclusion</u><u>:</u>-
The equation of the perpendicular line  is
y=x+6[/tex]
 
        
             
        
        
        
Answer:
y = -3/2x -5
Step-by-step explanation:
We want slope intercept form which is y = mx+b
Y+2=-3/2(x+2)
Distribute
y+2 = -3/2x -3
Subtract 2 from each side
y+2-2 = -3/2x -3-2
y = -3/2x -5
 
        
             
        
        
        
The midpoint T equals to 3 and 4