Answer:
0.057 M
Explanation:
Step 1: Given data
Solubility product constant (Ksp) for HgBr₂: 2.8 × 10⁻⁴
Concentration of mercury (II) ion: 0.085 M
Step 2: Write the reaction for the solution of HgBr₂
HgBr₂(s) ⇄ Hg²⁺(aq) + 2 Br⁻
Step 3: Calculate the bromide concentration needed for a precipitate to occur
The Ksp is:
Ksp = 2.8 × 10⁻⁴ = [Hg²⁺] × [Br⁻]²
[Br⁻] = √(2.8 × 10⁻⁴/0.085) = 0.057 M
Answer: The chemical formula of the gas is Xenon.
Explanation:
From Graham's law of effusion rates, the rate of effusion of a gas is inversely proportional to the square root of its molar mass.
Given: Rate of unknown gas =
Putting the values in the formula:

Squaring both sides:


As Xenon (Xe) has molar mass of 131g/mol, Thus the chemical formula of the gas is Xenon.
-130KJ is the standard heat of formation of CuO.
Explanation:
The standard heat of formation or enthalpy change can be calculated by using the formula:
standard heat of formation of reaction = standard enthalpy of formation of product - sum of enthalpy of product formation
Data given:
Cu2O(s) ---> CuO(s) + Cu(s) ∆H° = 11.3 kJ
2 Cu2O(s) + O2(g) ---> 4 CuO(s) ∆H° = -287.9 kJ
CuO + Cu ⇒ Cu2O (-11.3 KJ) ( Formation of Cu2O)
When 1 mole Cu20 undergoes combustion 1/2 moles of oxygen is consumed.
Cu20 + 1/2 02 ⇒ 2CuO (I/2 of 238.7 KJ) or 119.35 KJ
So standard heat of formation of formation of Cu0 as:
Cu + 1/2 02 ⇒ CuO
putting the values in the equation
ΔHf = ΔH1 + ΔH2 (ΔH1 + ΔH2 enthalapy of reactants)
heat of formation = -11.3 + (-119.35)
= - 130.65kJ
-130.65 KJ is the heat of formation of CuO in the given reaction.