Oxygen has 8 electrons. On the outer ring, it has 6 valance electrons. It need 2 more valance electrons to be stable.
The reactants in this reaction are sodium and chlorine. Sodium is a soft, silvery-white metal that is highly reactive. Chlorine is a poisonous greenish-yellow gas that has an odor and combines readily with other elements.
This might be the exact question so you might wanna rephrase it but good luck! :)))
Answer:
In compound 1 the Tert butyl group occupies the equatorial position and the Bromine occupies the axial position and in compound 2 the Tert butyl occupies the axial and the bromine occupies equatorial positions. Compound 1 reacts faster than compound 2.
Explanation:
In cyclic organic compounds, substituents may occupy the axial or equatorial positions. The axial positions are aligned parallel to the symmetry axis of the ring while the equatorial positions are around the plane of the ring.
Bulky substituents have more room in the equatorial than in the axial position. This means that compound 1 is more stable than compound 2.
This is clear on the basis of stability of the molecules because compound 1 will react faster than compound 2 since the bulky tertiary butyl group in compound 1 occupy equatorial and not axial positions.
1.70 × 10³ seconds
<h3>Explanation </h3>
+ 2 e⁻ → 
It takes two moles of electrons to reduce one mole of cobalt (II) ions and deposit one mole of cobalt.
Cobalt has an atomic mass of 58.933 g/mol. 0.500 grams of Co contains
of Co atoms. It would take
of electrons to reduce cobalt (II) ions and produce the
of cobalt atoms.
Refer to the Faraday's constant, each mole of electrons has a charge of around 96 485 columbs. The 0.01697 mol of electrons will have a charge of
. A current of 0.961 A delivers 0.961 C of charge in one single second. It will take
to transfer all these charge and deposit 0.500 g of Co.