Answer:
It is prepared small amounts of hydrogen cloride for uses in the lab.
It can be "generated in an HCl generator by dehydrating hydrochloric acid with either sulfuric acid or anhydrous calcium chloride."
Answer:
116 years
Explanation:
To solve this, we will use the half life equation;
A(t) = A_o(½)^(t/t_½)
Where;
A(t) is the amount of strontium left after t years;
A_o is the initial quantity of strontium that will undergo decay;
t_½ is the half-life of strontium
t is the time it will take to decay
We are given;
A(t) = 7.5 g
A_o = 120 g
From online values, half life of strontium-90 is 29 years. Thus, t_½ = 29
Thus;
7.5 = 120 × ½^(t/29)
Divide both sides by 120 to get;
7.5/120 = ½^(t/29)
0.0625 = ½^(t/29)
In 0.0625 = (t/29) In ½
-2.772589 = (t/29) × (-0.693147)
(t/29) = -2.772589/(-0.693147)
t/29 = 4
t = 29 × 4
t = 116 years
Since there is no phase change, we can use the heat equation,
Q = mcΔT
where Q is the amount of energy transferred (J), m is the mass of the substance (kg), c is the specific heat (J kg⁻¹ °C⁻¹) and ΔT is the temperature difference (°C).
Q = 2000 J
m = 100 g = 0.1 kg
c = ?
ΔT = (70 °C - 50 °C) = 20 °C
By applying the formula,
2000 J = 0.1 kg x c x 20 °C
c = 2000 J / (0.1 kg x 20 °C)
c = 1000 J kg⁻¹ °C⁻¹
Hence, the specific heat capacity of the liquid is 1000 J kg⁻¹ °C⁻¹.