Given a polynomial
and a point
, we have that

We know that our cubic function is zero at -4, 0 and 5, which means that our polynomial is a multiple of

Since this is already a cubic polynomial (it's the product of 3 polynomials with degree one), we can only adjust a multiplicative factor: our function must be

To fix the correct value for a, we impose
:

And so we must impose

So, the function we're looking for is

Answer:
The correct answer is option B
Answer:
The mean is 8.
Step-by-step explanation:
The mean is the sum of a set of numbers divided by the number of numbers in a set. In this case, you add up all the numbers to get 56, and divide by 7 to get 8.
Answer:
The image is blurry for me
Step-by-step explanation: