Increase as density increase and vise versa.
<span>The wavelength increases when a sound wave travels from a less dense to a more dense medium, the speed increases, and the frequency stays the same.</span>
Solid carbon is an element in its solid state, not a mixture.
Carbon-dioxide gas is a compound in its gaseous state, not a mixture.
Liquid copper is an element in its liquid state, not a compound.
Copper will never dissolve in water, so copper in water is a mixture.
Answer:
<h3>
a)</h3>




<u>=> R= 6 Ohms(Ω)</u>
<h3>b)</h3>

<em>these lights operate at the usual 240 volts direct from the main electricity supply. Therefore,</em>

<em>R and 100 can interchange places</em>


<u>=> R = 576 Ω</u>
<u></u>
By Ohm's Law:

=> 240 = I × 576
=>
=> I = 0.417 A
<h3 /><h3>c)</h3>
I don't know it's resistance,... so sorry
<h3>d)</h3>
The brightness of the bulb in series is <em><u>less than</u></em> when they're placed individually.
For bulbs in series their resistance gets added to form the equivalent resistance of the two bulbs.
Their resistances are nothing but mere numbers and the sum of two numbers(positive of course) is greater than the numbers.
So, the effective resistance of some bulbs in series <u>is more</u> than the individual resistance.
And
<em>Brightness, i. e., Power</em>

If resistance increases, Power decreases.
Here, the effective resistance was for sure larger, therefore resistance was increasing, hence power decreased taking brightness along with it.
The amount left of a given substance can be calculated through the equation,
A = (A0) x 0.5^n/h
From the given scenario,
A/A0 = 0.75 = 0.5*(60/h)
The value of h from the equation is 144.565 minutes.