Answer:
There are 52 such numbers that have even divisors.
Step-by-step explanation:
All the numbers between 2 and 59 have an EVEN number of positive divisors.
Except the Perfect Squares..
or 4, 9, 16, 25, 36 and 49, which have 3 divisors each.
So:
59 - 2 + 1 =58
Now subtract 58 from 6 (perfect squares)
58- 6=52
Therefore,it means that there are 52 such numbers that have EVEN divisors....
3 3/4 cups of flour is the correct answer to this problem.
Answer:
i think the answer is "C" (3-left 2, up 5) i may be wrong sry if i am, i tried :|
Step-by-step explanation:
It looks like you might have intended to say the roots are 7 + i and 5 - i, judging by the extra space between 7 and i.
The simplest polynomial with these characteristics would be

but seeing as each of the options appears to be a quartic polynomial, I suspect f(x) is also supposed to have only real coefficients. In that case, we need to pair up any complex root with its conjugate to "complete" f(x). We end up with

which appears to most closely resemble the third option. Upon expanding, we see f(x) does indeed have real coefficients:
