Let's call the number of elephants x.
x+4x=35
5x=35
x=7
So there are 7 elephants. There are four times as many monkeys.
7×4=28
There are 28 monkeys.
3600000, 3600000, 3600000 ur answer is <span>3600000</span>
<span>Amoeba splits 3 times an hour. If Amoeba can split into two every 20 mins then if you divide 60 mins (which would be an hour) by 20 mins (the time they split) you would find that Amoeba can split 3 times in an hour. The question asks how many times it can split in two hours. To find this you have to multiply the 3 times 2. This means that a single Amoeba can split 6 times in two hours. There are 15 Amoeba which means if you take 15 Amoeba time 6 in two hours and 90 would be your answer. There will be 90 Amoeba after the two hours.</span>
Answer:
or 
Step-by-step explanation:
step 1
Find the slope of the line
The formula to calculate the slope between two points is equal to

we have the ordered pairs
(3,-5) and (1,-9)
substitute the values



step 2
Find the equation in point slope form

Analyze two cases
<em>First case</em>
we have


substitute

<em>Second case</em>
we have


substitute

Note: The equation of the line in point slope form varies according to the point you choose, in contrast to the slope-intercept form

Answer:
12.0 tablet computers/month
Step-by-step explanation:
The average price of the tablet 25 months from now will be:

Next, we determine the rate at which the quantity demanded changes with respect to time.
Using Chain Rule (and a calculator)

![\dfrac{dx}{dp}= \dfrac{d}{dp}\left[{ \dfrac { 100 } { 9 } \sqrt { 810,000 - p ^ { 2 } } }\right] =-\dfrac{100}{9}p(810,000-p^2)^{-1/2}](https://tex.z-dn.net/?f=%5Cdfrac%7Bdx%7D%7Bdp%7D%3D%20%5Cdfrac%7Bd%7D%7Bdp%7D%5Cleft%5B%7B%20%5Cdfrac%20%7B%20100%20%7D%20%7B%209%20%7D%20%5Csqrt%20%7B%20810%2C000%20-%20p%20%5E%20%7B%202%20%7D%20%7D%20%7D%5Cright%5D%20%3D-%5Cdfrac%7B100%7D%7B9%7Dp%28810%2C000-p%5E2%29%5E%7B-1%2F2%7D)
![\dfrac{dp}{dt}=\dfrac{d}{dt}\left[\dfrac { 400 } { 1 + \dfrac { 1 } { 8 } \sqrt { t } } + 200 \right]=-25\left[1 + \dfrac { 1 } { 8 } \sqrt { t } \right]^{-2}t^{-1/2}](https://tex.z-dn.net/?f=%5Cdfrac%7Bdp%7D%7Bdt%7D%3D%5Cdfrac%7Bd%7D%7Bdt%7D%5Cleft%5B%5Cdfrac%20%7B%20400%20%7D%20%7B%201%20%2B%20%5Cdfrac%20%7B%201%20%7D%20%7B%208%20%7D%20%5Csqrt%20%7B%20t%20%7D%20%7D%20%2B%20200%20%5Cright%5D%3D-25%5Cleft%5B1%20%2B%20%5Cdfrac%20%7B%201%20%7D%20%7B%208%20%7D%20%5Csqrt%20%7B%20t%20%7D%20%5Cright%5D%5E%7B-2%7Dt%5E%7B-1%2F2%7D)
Therefore:
![\dfrac{dx}{dt}= \left[-\dfrac{100}{9}p(810,000-p^2)^{-1/2}\right]\left[-25\left[1 + \dfrac { 1 } { 8 } \sqrt { t } \right]^{-2}t^{-1/2}\right]](https://tex.z-dn.net/?f=%5Cdfrac%7Bdx%7D%7Bdt%7D%3D%20%5Cleft%5B-%5Cdfrac%7B100%7D%7B9%7Dp%28810%2C000-p%5E2%29%5E%7B-1%2F2%7D%5Cright%5D%5Cleft%5B-25%5Cleft%5B1%20%2B%20%5Cdfrac%20%7B%201%20%7D%20%7B%208%20%7D%20%5Csqrt%20%7B%20t%20%7D%20%5Cright%5D%5E%7B-2%7Dt%5E%7B-1%2F2%7D%5Cright%5D)
Recall that at t=25, 
Therefore:
![\dfrac{dx}{dt}(25)= \left[-\dfrac{100}{9}\times 446.15(810,000-446.15^2)^{-1/2}\right]\left[-25\left[1 + \dfrac { 1 } { 8 } \sqrt {25} \right]^{-2}25^{-1/2}\right]\\=12.009](https://tex.z-dn.net/?f=%5Cdfrac%7Bdx%7D%7Bdt%7D%2825%29%3D%20%5Cleft%5B-%5Cdfrac%7B100%7D%7B9%7D%5Ctimes%20446.15%28810%2C000-446.15%5E2%29%5E%7B-1%2F2%7D%5Cright%5D%5Cleft%5B-25%5Cleft%5B1%20%2B%20%5Cdfrac%20%7B%201%20%7D%20%7B%208%20%7D%20%5Csqrt%20%7B25%7D%20%5Cright%5D%5E%7B-2%7D25%5E%7B-1%2F2%7D%5Cright%5D%5C%5C%3D12.009)
The quantity demanded per month of the tablet computers will be changing at a rate of 12 tablet computers/month correct to 1 decimal place.