Answer:
I think you have to restart your device.
I know filters, so I know it is Saturation.
Answer:
See explaination for the program code
Explanation:
The code below
Pseudo-code:
//each item ai is used at most once
isSubsetSum(A[],n,t)//takes array of items of size n, and sum t
{
boolean subset[n+1][t+1];//creating a boolean mtraix
for i=1 to n+1
subset[i][1] = true; //initially setting all first column values as true
for i = 2 to t+1
subset[1][i] = false; //initialy setting all first row values as false
for i=2 to n
{
for j=2 to t
{
if(j<A[i-1])
subset[i][j] = subset[i-1][j];
if (j >= A[i-1])
subset[i][j] = subset[i-1][j] ||
subset[i - 1][j-set[i-1]];
}
}
//returns true if there is a subset with given sum t
//other wise returns false
return subset[n][t];
}
Recurrence relation:
T(n) =T(n-1)+ t//here t is runtime of inner loop, and innner loop will run n times
T(1)=1
solving recurrence:
T(n)=T(n-1)+t
T(n)=T(n-2)+t+t
T(n)=T(n-2)+2t
T(n)=T(n-3)+3t
,,
,
T(n)=T(n-n-1)+(n-1)t
T(n)=T(1)+(n-1)t
T(n)=1+(n-1)t = O(nt)
//so complexity is :O(nt)//where n is number of element, t is given sum
1. The current is the same everywhere in the circuit. This means that wherever I try to measure
the current, I will obtain the same reading.
2. Each component has an individual Ohm's law Voltage Drop. This means that I can calculate
the voltage using Ohm's Law if I know the current through the component and the resistance.
3. Kirchoff's Voltage Law Applies. This means that the sum of all the voltage sources is equal to
the sum of all the voltage drops or
VS = V1 + V2 + V3 + . . . + VN
4. The total resistance in the circuit is equal to the sum of the individual resistances.
RT = R1 + R2 + R3 + . . . + RN
5. The sum of the power supplied by the source is equal to the sum of the power dissipated in
the components.
<span>PT = P1 + P2 + P3 + . . . + PN</span>
False. Apache (which serves about 63% of the web pages) just serves the files. How it looks is a combination of the HTML and CSS that the site uses.