Objects should be cooled before their mass is determined on a sensitive balance because it could damage the balance. Also, because it would give you wrong reading of the mass. Hot objects would warm the air around it. A warm air would expand and would produce convection as it rises causing to give the object a mass that is less than the actual. Another reason would be it would cause instability in the readings, the mass would fluctuate every now and then due to the convection currents around the object. It is always recommended to weigh the masses of objects that are in room temperature.
Given parameters:
Mass on earth = 50kg
Unknown:
Mass on planet Xenon = ?
Weight on planet Xenon = ?
Mass is the amount of matter contained in a particular substance.
Weight is the force on a body and it is derived from the product of mass and acceleration due to gravity.
Weight = mass x acceleration due to gravity
Planet Xenon has half the gravitational force of Earth.
This translated gives
= 4.9m/s²
Now, mass is always the same every where if the amount of matter in a substance does not change.
In this problem, mass = 50kg on planet xenon.
Weight = mass x acceleration due to gravity = 50 x 4.9 = 245N
The weight on Xenon is 245N and the mass is 50kg
Answer: 117.6N
Explanation:
By the second Newton's law, we know that:
F = m*a
F = force
m = mass
a = acceleration
We know that in the surface of the Earth, the gravitational acceleration is g = 9.8m/s^2.
Then we just can input that acceleration in the above equation, and also replace m by 12kg, and find that the force due the gravity is:
F = 12kg*9.8m/s^2 = 117.6N