Answer:
D
A machine can help decrease the input force and increase the output force.
Answer:
18.03 s
Explanation:
We have two different types of motions, the criminal moves with uniform motion while the police do it with uniformly accelerated motion. Therefore we will use the equations of these cases. We know that by the time the police reach the criminal they will have traveled the same distance.
The distance between the police and the criminal when the first one starts the persecution is 0, its initial speed is also zero. So:
Equalizing these two equations and solving for t:
Answer:
and is in photo given.I didn't get time to type.
Hello! You can call me Emac or Eric.
I understand your problem, that question is pretty hard. But I found some information that I think you should read. This can get your problem done quickly.
Please hit that thank you button if that helped, I don’t want thank you’s I just want to know that this helped.
Please reply if this doesn’t help, I will try my best to gather more information or a answer.
Here is some good information that could help you out a lot!
Let’s begin by exploring some techniques astronomers use to study how galaxies are born and change over cosmic time. Suppose you wanted to understand how adult humans got to be the way they are. If you were very dedicated and patient, you could actually observe a sample of babies from birth, following them through childhood, adolescence, and into adulthood, and making basic measurements such as their heights, weights, and the proportional sizes of different parts of their bodies to understand how they change over time.
Unfortunately, we have no such possibility for understanding how galaxies grow and change over time: in a human lifetime—or even over the entire history of human civilization—individual galaxies change hardly at all. We need other tools than just patiently observing single galaxies in order to study and understand those long, slow changes.
We do, however, have one remarkable asset in studying galactic evolution. As we have seen, the universe itself is a kind of time machine that permits us to observe remote galaxies as they were long ago. For the closest galaxies, like the Andromeda galaxy, the time the light takes to reach us is on the order of a few hundred thousand to a few million years. Typically not much changes over times that short—individual stars in the galaxy may be born or die, but the overall structure and appearance of the galaxy will remain the same. But we have observed galaxies so far away that we are seeing them as they were when the light left them more than 10 billion years ago.
That is some information, I do have more if you need some! Thanks!
Have a great rest of your day/night! :)
Emacathy,
Brainly Team.
Answer:
The distance between the two slits is 40.11 μm.
Explanation:
Given that,
Frequency
Distance of the screen l = 88.0 cm
Position of the third order y =3.10 cm
We need to calculate the wavelength
Using formula of wavelength
where, c = speed of light
f = frequency
Put the value into the formula
We need to calculate the distance between the two slits
Where, m = number of fringe
d = distance between the two slits
Here,
Put the value into the formula
Hence, The distance between the two slits is 40.11 μm.