Answer:
<em>The new co-ordinates of A ( 2 ,-6)</em>
Step-by-step explanation:
Type of transformation change to co-ordinate point
Vertical translation up 'd' units (x,y)→(x , y+d)
<em>Vertical translation down 'd' units (x,y)→(x , y-d)</em>
<em>Horizontal translation right 'c' units (x,y)→(x+c , y)</em>
Horizontal translation left 'c' units (x,y)→(x-c , y)
<em>Reflection over x-axis (x,y) →(x , -y)</em>
Reflection over y-axis (x,y) →(-x , y)
Given the original vertex A ( -2 ,3)
a) First reflection over x-axis ( -2 ,3) <em>→(-2 , -3)</em>
<em>b) Vertical translation down '3' units so it changes (-2 , -3)→(-2 , -3-3)</em>
<em> (-2,-3)→(-2 ,-6)</em>
<em>and</em>
<em>c) The Horizontal translation right '4' units </em>
<em>now it changes ( -2 ,-6) → (-2+4,-6)→(2 ,-6)</em>
<em></em>
<u><em>Final answer</em></u><em>:- </em>
<em>The new co-ordinates of A ( 2 ,-6)</em>
<em></em>