<span>The number of dollars collected can be modelled by both a linear model and an exponential model.
To calculate the number of dollars to be calculated on the 6th day based on a linear model, we recall that the formula for the equation of a line is given by (y - y1) / (x - x1) = (y2 - y1) / (x2 - x1), where (x1, y1) = (1, 2) and (x2, y2) = (3, 8)
The equation of the line representing the model = (y - 2) / (x - 1) = (8 - 2) / (3 - 1) = 6 / 2 = 3
y - 2 = 3(x - 1) = 3x - 3
y = 3x - 3 + 2 = 3x - 1
Therefore, the amount of dollars to be collected on the 6th day based on the linear model is given by y = 3(6) - 1 = 18 - 1 = $17
To calculate the number of dollars to be calculated on the 6th day based on an exponential model, we recall that the formula for exponential growth is given by y = ar^(x-1), where y is the number of dollars collected and x represent each collection day and a is the amount collected on the first day = $2.
8 = 2r^(3 - 1) = 2r^2
r^2 = 8/2 = 4
r = sqrt(4) = 2
Therefore, the amount of dollars to be collected on the 6th day based on the exponential model is given by y = 2(2)^(5 - 1) = 2(2)^4 = 2(16) = $32</span>
Answer:
The answers is n=35
Step-by-step explanation:
Solve for n by simplifying both sides of the equation. Then isolating the variable.
J’espère que ça aide.
Answer:
0.048 is the probability that more than 950 message arrive in one minute.
Step-by-step explanation:
We are given the following information in the question:
The number of messages arriving at a multiplexer is a Poisson random variable with mean 15 messages/second.
Let X be the number of messages arriving at a multiplexer.
Mean = 15
For poison distribution,
Mean = Variance = 15

From central limit theorem, we have:
where n is the sample size.
Here, n = 1 minute = 60 seconds
P(x > 950)
Calculation the value from standard normal z table, we have,

0.048 is the probability that more than 950 message arrive in one minute.
Answer:
y=45x+150
its a function but not a linear function
Step-by-step explanation:
hope this helps
Answer:
Step-by-step explanation:
- Well I hate to break the news but 243 is not a perfect square. I'll work you through it, 243 is not a perfect square because it is not an even number. an even number must end in (0,2,4,6,8)
- Step one. Find the square root. the square root of 243 is <em>15.588. </em>
- Step two Is it a perfect square. No 243 just cant be a perfect square.
- Hope this helped :)