Answer:
1.373 mol H₂O
General Formulas and Concepts:
<u>Chemistry - Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
Explanation:
<u>Step 1: Define</u>
24.75 g H₂O
<u>Step 2: Identify Conversions</u>
Molar Mass of H - 1.01 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of H₂O - 2(1.01) + 16.00 = 18.02 g/mol
<u>Step 3: Convert</u>
<u />
= 1.37347 mol H₂O
<u>Step 4: Check</u>
<em>We are given 4 sig figs. Follow sig fig rules and round.</em>
1.37347 mol H₂O ≈ 1.373 mol H₂O
The answer is D transition state. In the energy profile, the transition state is the highest point. For a reaction, the activation energy is the minimal energy needed to trigger a reaction. The reactants are the start of the reaction and the products are the end of the reaction.
Answer:
C₅H₁₀O₅
Explanation:
1. Calculate the mass of each element in 2.78 mg of X.
(a) Mass of C

(b) Mass of H

(c) Mass of O
Mass of O = 3.5 - 1.400 - 0.2349 = 1.87 g
2. Calculate the moles of each element

3. Calculate the molar ratios
Divide all moles by the smallest number of moles.

4. Round the ratios to the nearest integer
C:H:O = 1:2:1
5. Write the empirical formula
The empirical formula is CH₂O.
6. Calculate the molecular formula.
EF Mass = (12.01 + 2.016 + 16.00) u = 30.03 u
The molecular formula is an integral multiple of the empirical formula.
MF = (EF)ₙ

MF = (CH₂O)₅ = C₅H₁₀O₅
The molecular formula of X is C₅H₁₀O₅.
Answer:
chemical reactions which proceed with the release of heat energy are called exothermic reactions
Natural gas is primarily composed of methane (CH4)
Natural gas is a naturally occurring hydrocarbon mixture which is primarily composed of Methane(CH4), but it also contains ethane,propane and heavier hydrocarbon. In addition it contain small amount of nitrogen, carbon dioxide,hydrogen sulfide and traces amount of water.