Answer:
true
Explanation:
and don't look up the link everyone says it's scam bots
Answer:
Explanation has been given below.
Explanation:
- A buffer consists of either of a weak acid along with it's conjugate base or a weak base along with it's conjugate acid.
- Let's consider a buffer consists of a weak acid along with it's conjugate base
- If we add an acid to this buffer then conjugate base gets protonated and converted to corresponding weak acid. So effect of addition of acid gets neutralized by forming weak acid rather than increase in concentration of proton in solution.
- If we add a base to this buffer then weak acid gets converted to corresponding conjugate base. So effect of addition of base gets neutralized by forming conjugate base rather than in crease in concentration of hydroxyl ion in solution.
Answer:
The most effective buffer at pH 9.25 will be a mixture of 1.0 M NH3 and 1.0 M NH4Cl
Explanation:
Step 1: Data given
pH of a buffer = pKa + log ([A-]/[Ha])
a mixture of 1.0 M HC2H3O2 and 1.0 M NaC2H3O2 (Ka for acetic acid = 1.8 x 10-5)
pH = -log( 1.8 * 10^-5) + log (1/1)
pH = -log( 1.8 * 10^-5)
pH = 4.74
a mixture of 1.0 M NaCN and 1.0 M KCN (Ka for HCN = 4.9 x 10-10)
pH = -log( 4.9 * 10^-10) + log (1/1)
pH = -log( 1.8 * 10^-5)
pH = 9.30
a mixture of 1.0 M HCl and 1.0 M NaCl
The solution made from NaCl and HCl will NOT act as a buffer.
HCl is a strong acid while NaCl is salt of strong acid and strong base which do not from buffer solutions hence due to HCl PH is less than 7.
a mixture of 1.0 M NH3 and 1.0 M NH4Cl (Kb for ammonia = 1.76 x 10^-5)
Ka * Kb = 1*10^-14
Ka = 10^-14 / 1.76*10^-5
Ka = 5.68*10^-10
pH = -log( 5.68*10^-10) + log (1/1)
pH = -log( 5.68*10^-10)
pH = 9.25
The most effective buffer at pH 9.25 will be a mixture of 1.0 M NH3 and 1.0 M NH4Cl
2H2S+2SO2 》》 4S+2H2O hope that'll help u