Answer:
the initial temperature of the iron sample is Ti = 90,36 °C
Explanation:
Assuming the calorimeter has no heat loss to the surroundings:
Q w + Q iron = 0
Also when the T stops changing means an equilibrium has been reached and therefore, in that moment, the temperature of the water is the same that the iron ( final temperature of water= final temperature of iron = T )
Assuming Q= m*c*( T- Tir)
mc*cc*(T-Tc)+mir*cir*(T - Tir) = 0
Tir = 20.3 °C + 300 g * 4.186 J/g°C * (20.3 C - 19 °C) / ( 51.9 g * 0.449 J/g°C )
Tir = 90.36 °C
Note :
- The specific heat capacity of water is assumed 1 cal/g°C = 4.186 J/g°C
- We assume no reaction between iron and water
Answer:
0.01917 m^3/kg.
Explanation:
Given:
P = 15 MPa
= 1.5 × 10^4 kPa
T = 350 °C
= 350 + 273
= 623 K
Molar mass of water, m = (2 × 1) + 16
= 18 g/mol
= 0.018 kg/mol
R = 0.4615 kPa·m3/kg·K
Using ideal gas equation,
P × V = n × R × T
But n = mass/molar mass
V = (R × T)/P
V/M = (R × T)/P × m
= (0.4615 × 623)/1.5 × 10^4
= 0.01917 m^3/kg.
Answer:
chlorine atom
A chlorine atom has 17 protons, 18 neutrons, and 17 electrons.
Explanation:
In a bowl, combine 1/4 cup of while glue and 1 tablespoon of liquid laundry detergent. Stir to combine, then wait a few minutes for it to turn gooey<span>. If you want to </span>make<span> colored </span>slime<span>, stir in a few drops of food coloring into the glue before you add the detergent.</span>