1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Xelga [282]
4 years ago
13

Please Help!!!!!!! Simplify (√5)(3√5).

Mathematics
1 answer:
kirill [66]4 years ago
7 0

The answer is 15

multiply 3sqrt(25)

3*5=15

You might be interested in
How do I solve (7-6i)(-8+3i)?
Alekssandra [29.7K]
I = {2.666666667, 1.166666667
6 0
3 years ago
Read 2 more answers
Emeril mixed 3/10 cup balsamic vinegar with 2/10 cup oil to make a salad dressing. Then he use 1/10cup of mixture for a large sa
LenKa [72]
Add them together and subtract so it would be 3/10+2/10=5/10 1-5/10=5/10

The answer is 5/10
8 0
3 years ago
Read 2 more answers
In the diagram below, BD is parallel to XY. What is the value of x?<br>​
alexira [117]

Answer:

A. 55

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Hello I need help please anyone help me ??????!!!!!!
zvonat [6]

Answer:

(x-4)^2

(x-4)(x-4)

x^2-4x-4x+16

X^2-8+16

3 0
3 years ago
Please find the general limit of the following function:
valentinak56 [21]

Answer:

The general limit exists at <em>x</em> = 9 and is equal to 300.

Step-by-step explanation:

We want to find the general limit of the function:

\displaystyle \lim_{x \to 9}(x^2+2^7+(9.1\times 10))

By definition, a general limit exists at a point if the two one-sided limits exist and are equivalent to each other.

So, let's find each one-sided limit: the left-hand side and the right-hand side.

The left-hand limit is given by:

<h3>\displaystyle \lim_{x \to 9^-}(x^2+2^7+(9.1 \times 10))</h3>

Since the given function is a polynomial, we can use direct substitution. This yields:

=(9)^2+2^7+(9.1\times 10)

Evaluate:

300

Therefore:

\displaystyle \lim_{x \to 9^-}(x^2+2^7+(9.1 \times 10))=300

The right-hand limit is given by:

\displaystyle \lim_{x \to 9^+}(x^2+2^7+(9.1\times 10))

Again, since the function is a polynomial, we can use direct substitution. This yields:

=(9)^2+2^7+(9.1\times 10)

Evaluate:

=300

Therefore:

\displaystyle \lim_{x \to 9^+}(x^2+2^7+(9.1\times 10))=300

Thus, we can see that:

\displaystyle \lim_{x \to 9^-}(x^2+2^7+(9.1\times 10))=\displaystyle \lim_{x \to 9^+}(x^2+2^7+(9.1\times 10))=300

Since the two-sided limits exist and are equivalent, the general limit of the function does exist at <em>x</em> = 9 and is equal to 300.

8 0
3 years ago
Read 2 more answers
Other questions:
  • What is (4x+1) degrees and 17 degrees show your work simplify.
    7·1 answer
  • If m∠A = m∠B and m∠A + m∠C = ∠D, then
    12·2 answers
  • Find the degree measure of the complement of an angle whose degree measure is 2c.
    14·1 answer
  • The radius of a circle is 3 miles. what is the circle’s circumference? use 3.14
    11·2 answers
  • ***HELP PLEASE***<br> 11. Find the values of x and y. (2 points)
    14·1 answer
  • Can somebody plz help answer this question correctly (only if u know how to do it) thanks lol :)
    8·1 answer
  • Due now help please !!!!!!!!!!!!!!!!!!!!
    12·1 answer
  • 8. The Garcias ate 9 pieces of toast for breakfast. If there are 33 slice of bread how many
    10·1 answer
  • About 1.15 million people live in a circular region with a population density of 18075 people per kilometer. Find the radius of
    6·1 answer
  • How do I solve this problem? It’s been awhile since I’ve done math
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!