ŷ= 1.795x +2.195 is the equation for the line of best fit for the data
<h3>How to use regression to find the equation for the line of best fit?</h3>
Consider the table in the image attached:
∑x = 29, ∑y = 74, ∑x²= 125, ∑xy = 288, n = 10 (number data points)
The linear regression equation is of the form:
ŷ = ax + b
where a and b are the slope and y-intercept respectively
a = ( n∑xy -(∑x)(∑y) ) / ( n∑x² - (∑x)² )
a = (10×288 - 29×74) / ( 10×125-29² )
= 2880-2146 / 1250-841
= 734/409
= 1.795
x' = ∑x/n
x' = 29/10 = 2.9
y' = ∑y/n
y' = 74/10 = 7.4
b = y' - ax'
b = 7.4 - 1.795×2.9
= 7.4 - 5.2055
= 2.195
ŷ = ax + b
ŷ= 1.795x +2.195
Therefore, the equation for the line of best fit for the data is ŷ= 1.795x +2.195
Learn more about regression equation on:
brainly.com/question/29394257
#SPJ1
You can determine the shape if it is a triangle, square, rectangle, or hexagon (or other) by seeing how many sides it has.
a triangle has 3 sides.
a square has 4 sides.
a rectangle also has 4 sides.
a pentagon has 5 sides.
a hexagon has 6 sides.
Answer: ∠ J = 62° , ∠ K = 59° , ∠ L = 59°
<u>Step-by-step explanation:</u>
It is given that it is an Isosceles Triangle, where L J ≅ K J
It follows that ∠ K ≅ ∠ L
⇒ 5x + 24 = 4x + 31
⇒ x + 24 = 31
⇒ x = 7
Input the x-value into either equation to solve for ∠ K & ∠ L:
∠ K = 5x + 24
= 5(7) + 24
= 35 + 24
= 59
∠ K ≅ ∠ L ⇒ ∠ L = 59
Next, find the value of ∠ J:
∠ J + ∠ K + ∠ L = 180 Triangle Sum Theorem
∠ J + 59 + 59 = 180
∠ J + 118 = 180
∠ J = 62
Answer:
Can someone please help me with this question?
Step-by-step explanation:
Answer:
-52
Step-by-step explanation:
plug 2 into u(x) which is equal to
2(5) + 1= 5
plug 5 into w(x) which is equal to
-2(5^2) - 2
-2(25) - 2
-50 - 2 = -52