Hope this is the right one.
Problem 8p^2 - 30p + c
<em>Step One</em>
Take 1/2 of - 30
1/2 * -30 = - 15
<em>Step 2
</em>Square -15
(-15)^2 = 225
c = 225
Problem Nine
a = 1
b = 4
c = -15


x = [-4 +/- sqrt(76)] / 2
x = [-4 +/- 2*sqrt19]/2
x = [-4/2 +/- 2/2 sqrt[19]
x = - 2 +/- sqrt(19)
x1 = - 2 + sqrt(19)
x2 = -2 - sqrt(19)
These two can be broken down more by finding the square root. I will leave them the way they are. It's just a calculator question if you want it to go into decimal form.
Problem Tena = 1
b = 4
c = -32
The discriminate is sqrt(b^2 - 4ac)
D = sqrt(b^2 - 4ac)
D = sqrt(4^2 - 4(1)(-32)
D = sqrt(16 - - 128)
D = sqrt(16 + 128)
D = sqrt(144)
D = +/- 12
Since D can equal + or minus 12 there must be 2 possible (and different) roots. As a matter of fact, this quadratic can be factored.
(x + 8)(x - 4) = y
But that' s not what you were asked for.
The discriminate is > 0 so the roots are going to be real.
<em>
Answer; The discriminate is > 0 so there will be 2 real different roots.</em>
Answer:
82.79MPa
Step-by-step explanation:
Minimum yield strength for AISI 1040 cold drawn steel as obtained from literature, Sᵧ = 490 MPa
Given, outer radius, r₀ = 25mm = 0.025m, thickness = 6mm = 0.006m, internal radius, rᵢ = 19mm = 0.019m,
Largest allowable stress = 0.8(-490) = -392 MPa (minus sign because of compressive nature of the stress)
The tangential stress, σₜ = - ((r₀²p₀)/(r₀² - rᵢ²))(1 + (rᵢ²/r²))
But the maximum tangential stress will occur on the internal diameter of the tube, where r = rᵢ
σₜₘₐₓ = -2(r₀²p₀)/(r₀² - rᵢ²)
p₀ = - σₜₘₐₓ(r₀² - rᵢ²)/2(r₀²) = -392(0.025² - 0.019²)/2(0.025²) = 82.79 MPa.
Hope this helps!!
For this case we have the following product:

We must use the distributive property correctly to solve the problem.
We have then:

Then, we must add similar terms.
We have then:
Answer:
The final product is given by:
option 2
Answer:
The sample space for selecting the group to test contains <u>2,300</u> elementary events.
Step-by-step explanation:
There are a total of <em>N</em> = 25 aluminum castings.
Of these 25 aluminum castings, <em>n</em>₁ = 4 castings are defective (D) and <em>n</em>₂ = 21 are good (G).
It is provided that a quality control inspector randomly selects three of the twenty-five castings without replacement to test.
In mathematics, the procedure to select k items from n distinct items, without replacement, is known as combinations.
The formula to compute the combinations of k items from n is given by the formula:

Compute the number of samples that are possible as follows:


The sample space for selecting the group to test contains <u>2,300</u> elementary events.
Answer:
y=-3x-3
Step-by-step explanation:
Rotate 90 degrees
find slope
find y intercept
write equation