Answer:
9r
Step-by-step explanation:
Answer:
![4 \sqrt{6} \times \sqrt{3} = 12 \sqrt{2}](https://tex.z-dn.net/?f=4%20%5Csqrt%7B6%7D%20%20%5Ctimes%20%20%5Csqrt%7B3%7D%20%20%3D%2012%20%5Csqrt%7B2%7D%20)
Step-by-step explanation:
We want to simplify the radical expression:
![4 \sqrt{6} \times \sqrt{3}](https://tex.z-dn.net/?f=4%20%5Csqrt%7B6%7D%20%20%5Ctimes%20%20%5Csqrt%7B3%7D%20)
We write √6 as √(2*3).
This implies that:
![4 \sqrt{6} \times \sqrt{3} = 4 \sqrt{2 \times 3} \times \sqrt{3}](https://tex.z-dn.net/?f=4%20%5Csqrt%7B6%7D%20%20%5Ctimes%20%20%5Csqrt%7B3%7D%20%20%3D%204%20%5Csqrt%7B2%20%5Ctimes%203%7D%20%20%20%5Ctimes%20%20%5Csqrt%7B3%7D%20)
We now split the radical for √(2*3) to get:
![4 \sqrt{6} \times \sqrt{3} = 4 \sqrt{2} \times \sqrt{3} \times \sqrt{3}](https://tex.z-dn.net/?f=4%20%5Csqrt%7B6%7D%20%20%5Ctimes%20%20%5Csqrt%7B3%7D%20%20%3D%204%20%5Csqrt%7B2%7D%20%20%5Ctimes%20%20%5Csqrt%7B3%7D%20%20%5Ctimes%20%20%5Csqrt%7B3%7D%20)
We obtain a perfect square at the far right.
![4 \sqrt{6} \times \sqrt{3} = 4 \sqrt{2} \times (\sqrt{3} )^{2}](https://tex.z-dn.net/?f=4%20%5Csqrt%7B6%7D%20%20%5Ctimes%20%20%5Csqrt%7B3%7D%20%20%3D%204%20%5Csqrt%7B2%7D%20%20%5Ctimes%20%20%28%5Csqrt%7B3%7D%20%29%5E%7B2%7D%20)
This simplifies to
![4 \sqrt{6} \times \sqrt{3} = 4 \sqrt{2} \times 3](https://tex.z-dn.net/?f=4%20%5Csqrt%7B6%7D%20%20%5Ctimes%20%20%5Csqrt%7B3%7D%20%20%3D%204%20%5Csqrt%7B2%7D%20%20%5Ctimes%203)
This gives us:
![4 \sqrt{6} \times \sqrt{3} = 4 \times 3 \sqrt{2}](https://tex.z-dn.net/?f=4%20%5Csqrt%7B6%7D%20%20%5Ctimes%20%20%5Csqrt%7B3%7D%20%20%3D%204%20%5Ctimes%203%20%5Csqrt%7B2%7D%20)
and finally, we have:
![4 \sqrt{6} \times \sqrt{3} = 12 \sqrt{2}](https://tex.z-dn.net/?f=4%20%5Csqrt%7B6%7D%20%20%5Ctimes%20%20%5Csqrt%7B3%7D%20%20%3D%2012%20%5Csqrt%7B2%7D%20)
Tammy's sample may not be considered valid because, on the first hand, it is said that she only asked students from her " Math Class".
If she wants to have a survey to find out the favorite subject of the students at her school, she must conduct a survey involving all the students in her school, not just in her class. What she did is just subjective. She should use a tally listing the different subjects and compare the number of students per subject. This way, she can have an objective representation of the least liked subjects and the most liked subjects of the students on her school.
Illustrating her survey through statistics may be more reliable and valid because it shows frequencies in which she can calculate easily and accurately the percentage of the number of students per subject, in a more objective manner.
Answer:
use papamath it will give u the anwers
Step-by-step explanation: