Answer:
Step-by-step explanation:
In each case we find the discriminant b^2 - 4ac.
If the discriminant is negative, we have two unequal, complex roots.
If the discriminant is zero. we have two equal, real roots.
If the discriminant is positive, we have two unequal real roots.
#51: 8v^2 - 12v + 9: the discriminant is (-12)^2 - 4(8)(9) = -144. we have two unequal, complex roots
#52: (-11)^2 - 4(4)(-14) = 121 + 224 = 345. we have two unequal real roots.
#53: (-5)^2 - 4(7)(6) = 25 - 168 (negative). we have two unequal, complex roots.
#54: (4)^2 - 16 = 0. We have two equal, real roots.
Answer:


Step-by-step explanation:
First we define two generic vectors in our
space:


By definition we know that Euclidean norm on an 2-dimensional Euclidean space
is:

Also we know that the inner product in
space is defined as:

So as first condition we have that both two vectors have Euclidian Norm 1, that is:

and

As second condition we have that:


Which is the same:

Replacing the second condition on the first condition we have:

Since
we have two posible solutions,
or
. If we choose
, we can choose next the other solution for
.
Remembering,

The two vectors we are looking for are:

Answer:
By the angles and sides, but if you need more help here is a link to a video that could be pretty helpful.
Step-by-step explanation:
https://www.khanacademy.org/math/cc-fourth-grade-math/plane-figures/imp-classifying-triangles/v/scalene-isosceles-equilateral-acute-right-obtuse#:~:text=Learn%20to%20categorize%20triangles%20as,acute%2C%20right%2C%20or%20obtuse.
Answer:
Continuously
Step-by-step explanation:
Continuously
Answer:
m∠1 = 106
Step-by-step explanation:
Given: m∠5 = 106
Vertical angles are congruent
The Alternate Interior Angles Theorem states that, when two parallel lines are cut by a transversal , the resulting alternate interior angles are congruent.
Therefore: m∠1 = 106