Answer:
yniar hcum oot sti ereh pleh esaelp retaw eht rednu ma i uoy era woh olleh
Step-by-step explanation:yniar hcum oot sti ereh pleh esaelp retaw eht rednu ma i uoy era woh ollehyniar hcum oot sti ereh pleh esaelp retaw eht rednu ma i uoy era woh ollehyniar hcum oot sti ereh pleh esaelp retaw eht rednu ma i uoy era woh ollehyniar hcum oot sti ereh pleh esaelp retaw eht rednu ma i uoy era csacasccacwoh ollehyniar hcum oot sti ereh pleh esaelp retaw eht rednu ma i uoy era woh ollehyniar hcum oot sti ereh pleh esaelp retaw eht rednu ma i uoy era woh ollehyniar hcum oot sti ereh pleh esaelp retaw eht rednu ma i uoy era woh ollehyniar hcum oot sti ereh pleh esaelp retaw eht rednu ma i uoy era woh olleh
Answer:690 580 470 360 250 140
Step-by-step explanation:
These digits are all numbers that the hundreds digit is three less than the tens digit, the ones digit is also zero
The decimal representation of any number is a linear combination of powers of 10. In other words, given a number like 123.456, we can expand it as

for any
, so the above is the same as

Similarly, we can write

Now it's a question of reducing the fraction as much as possible. We have
so

Let the least possible value of the smallest of 99 cosecutive integers be x and let the number whose cube is the sum be p, then

By substitution, we have that

and

.
Therefore, <span>the least possible value of the smallest of 99 consecutive positive integers whose sum is a perfect cube is 314.</span>
Answer:
5/7 or D
Step-by-step explanation:
i just know