Answer:
Children ≤ 3 (are free)
Step-by-step explanation:
This is strangely worded by I think this is what you were looking for.
The key take away is, if it says something and under, you know it means that it can either be exactly that "something" or anything that is less than it, so you would use the less than or equal to symbol.
Look at the number and see if any of the number line goes over
For the answer to the question above asking to <span>write an equation to express how much tatiana spent on her family if </span><span>Tatiana had $350. she spent $180 on herself, and the rest on presents for her family. t</span>he answer would be 350-180
Answer:
<em>Answer in explanation</em>
Step-by-step explanation:
<u>Linear Modeling</u>
It's given a situation where a student has two summer jobs and wants to collect $750 to pay for a down payment on a car. He gets paid $25 for each lawn mowed and $15 for each pool cleaned
- Create a model in standard form
Let
x = number of lawns mowed
y = number of pools cleaned
He wants to make $750, thus:
25x + 15 y = 750
Dividing by 5, we have the model that represents the linear relationship:
5x + 3y = 150
The x-intercept can be found by setting y=0:
5x + 3(0) = 150
5x = 150
Dividing by 5:
x = 150/5 = 30
x = 30
This represents the situation where the student gets his $750 by only mowing 30 lawns, no pools cleaned.
The y-intercept can be found by setting x =0:
5(0) + 3y = 150
3y = 150
y = 150/3 = 50
y = 50
This represents the situation where the student gets his $750 by only cleaning 50 pools, no lawns mowed.
- Identify two combinations that are solutions to the equation
Starting from the basic equation
5x + 3y = 150
We can give x some arbitrary value (less than 30) and find the value for y.
For example, for x=12
5*12 + 3y = 150
60 + 3y = 150
3y = 150 - 60 = 90
y = 90/3=30
This solution corresponds to the case where the student gets $750 by mowing 12 lawns and cleaning 30 pools.
For example, for x=21
5*21 + 3y = 150
105 + 3y = 150
3y = 150 - 105 = 45
y = 45/3=15
This solution corresponds to the case where the student gets $750 by mowing 21 lawns and cleaning 15 pools.