Answer:A rational number is such that when you multiply it by 5/2 and add 2/3 to the product you get -7/12 . What is the number.
Step-by-step explanation:Let p/q (q ≠ 0) denote the rational number. Multiplying it by 5/2 gives (p/q)(5/2). Add 2/3 to the product and we get (p/q)(5/2) + 2/3 . The result is given to be -7/12.
∴ (p/q)(5/2) + 2/3 = -7/12 …………………………..……………………………………..(1)
Transposing 2/3 to right-hand-side and changing the sign to negative,
(p/q)(5/2) = -2/3 -7/12 = -(2/3 + 7/12) =- (2 x 4 + 7)/12 (Taking L.C.M.)
Or, (p/q)(5/2) = -(8+7)/12 = - 15/12
Multiplying both sides by 2/5,
(p/q)(5/2) x (2/5) = -15/12 . 2/5 = -(3x5)/(3x4) . 2/5 =- 5/4 .2/5
Since 2/5 is the multiplicative inverse of 5/2, 5/2 x 2/5 = 1 and we obtain
(p/q).1 = -1/4 . 2/1 = -1/2
⇒ p/q = -1/2 which is a negative rational number in which p = 1 and q = 2 ≠ 0 .
∴ the rational number = -1/2
Answer:
4 divided by 2 = 2 so 2carrots per cup of water
Step-by-step explanation:
Hope this helps
The given matrix equation is,
.
Multiplying the matrices with the scalars, the given equation becomes,
Adding the matrices,
Matrix equality gives,
Solving the equations together,
We can see that the equations are not consistent.
There is no solution.
Answer:
- y = 0.937976x +12.765
- $12,765
- $31,524
- the cost increase each year
Step-by-step explanation:
1. For this sort of question a graphing calculator or spreadsheet are suitable tools. The attached shows the linear regression line to have the equation ...
... y = 0.937976x + 12.765
where x is years since 2000, and y is average tuition cost in thousands.
2. The y-intercept is the year-2000 tuition: $12,765.
3. Evaluating the formula for x=20 gives y ≈ 31.524, so the year-2020 tuition is expected to be $31,524.
4. The slope is the rate of change of tuition with respect to number of years. It is the average increase per year (in thousands). It amounts to about $938 per year.
5. [not a math question]
Answer:
<h2>a = - 4.8</h2>
Step-by-step explanation:
To find the value of a when b=6 we must first find the relationship between them.
The statement
a is inversely proportional to b is written as
where k is the constant of proportionality
When a = 7.2 , b = -4
So we have
k = 7.2 × - 4
k = - 28.8
So the formula for the variation is
When
b = 6
That's
We have the final answer as
<h3>a = - 4.8</h3>
Hope this helps you