Explanation:
Liquids also exert pressure in all directions on the walls of the container they are stored in. We see water coming out from leaking pipes and taps. ... Gases (Air) also exert pressure in all directions
Answer:
11300 kgm3
Hope this helps
The conservation of the mass of fluid through two sections (be they A1 and A2) of a conduit (pipe) or current tube establishes that the mass that enters is equal to the mass that exits. Mathematically the input flow must be the same as the output flow,

The definition of flow is given by

Where
V = Velocity
A = Area
The units of the flow of flow are cubic meters per second, that is to say that if there is a continuity, the volume of input must be the same as that of output, what changes if the sections are modified are the proportions of speed.
In this way


Answer:
2 in front of water and 1 in front of oxygen
Explanation:
This question is describing balancing a chemical reaction. A balanced chemical reaction has the same number of atoms of each elements on both the reactant and product side. According to the question, the reactants contains 4 atoms of oxygen. The reactants give rise to water (H20) and O2 in the products side.
This reaction is most likely the decomposition of hydrogen peroxide (H2O2) as follows:
H2O2 (l) ----> H2O (l) + O2(g)
Based on the description, H2O2 will be 2H2O2 as it is said to contain four atoms of oxygen. This means that, in order to have a balanced equation, we must place coefficient 2 in front of water and coefficient 1 in front of oxygen. That is;
2H2O2 (l) ----> 2H2O (l) + O2(g)
Answer:
The time it takes the proton to return to the horizontal plane is 7.83 X10⁻⁷ s
Explanation:
From Newton's second law, F = mg and also from coulomb's law F= Eq
Dividing both equations by mass;
F/m = Eq/m = mg/m, then
g = Eq/m --------equation 1
Again, in a projectile motion, the time of flight (T) is given as
T = (2usinθ/g) ---------equation 2
Substitute in the value of g into equation 2

Charge of proton = 1.6 X 10⁻¹⁹ C
Mass of proton = 1.67 X 10⁻²⁷ kg
E is given as 400 N/C, u = 3.0 × 10⁴ m/s and θ = 30°
Solving for T;

T = 7.83 X10⁻⁷ s