<span>Kinematics is used in this problem. The mass does not matter here because the question is mass independent.
vi = 0
vf = x
d = ?
d = vi + 1/2 a t^2
d = 0 + 1/2 (9.8) (1.8)^2
d = 15.9 m (counting sig figs)</span>
Answer:
0° FROM or 180° TO
Explanation:
A course deviation indicator or the CDI may be defined as an avionics tool or instrument that is used in the aircraft navigation which is used to determine an aircraft's lateral position with relation to a course.
While using the VOT service, we should tune the VOT frequency of the VOR receiver. And with the CDI leveled centered, the omnibearing selector or the OBS should read as 0° with the TO/FROM indicator showing 'FROM'. Else the OBS should read as 180° with the TO/FROM indication showing 'TO.'
When solving question that contains equations and the use mathematical computations, It is always ideal to list the parameters given.
Now, given that:
- the speed of the car which is the initial velocity (u) = 100 km/h before it hits the wall.
- after hitting the wall, the final velocity will be (v) = 0 km/h
Assumptions:
- Suppose we make an assumption that the distance travelled during the collision of the car with the brick wall (S) = 1 m
- That the car's acceleration is also constant.
∴
For a motion under constant acceleration, we can apply the kinematic equation:

where;
v = final velocity
u = initial velocity
a = acceleration
s = distance
From the above equation, making acceleration (a) the subject of the formula:


The initial velocity (u) is given in km/h, and we need to convert it to m/s as it has an effect on the unit of the acceleration.
since 1 km/h = 0.2778 m/s
100 km/h = 27.78 m/s


a = - 385.86 m/s²
Similarly, from the kinematic equation of motion, the formula showing the relation between time, acceleration and velocity is;
v = u + at
where;
v = 0
-u = at


t = 0.07 seconds
An airbag is designed in such a way as to prevent the driver from hitting on the steering wheel or other hard substance that could damage the part of the body. The use of the seat belt is to keep the driver in shape and in a balanced position against the expansion that occurred by the airbag during the collision on the brick wall.
Thus, we can conclude that the airbag must be inflated at 0.07 seconds faster before the collision to effectively protect the driver.
Learn more about the kinematic equation here:
brainly.com/question/11298125?referrer=searchResults
Answer:
521 nm
Explanation:
Given the values and units we are given, I'm assuming 5.76*10^14 Hz is frequency.
The formula to use here is λ * υ = c, where λ is wavelength, υ is frequency, and c is the speed of light.
λ = 
<span>The primary reason a light bulb emits light is due to the heating of the resistance in the filament of the light bulb. In fact, the power dissipated in a resistor is given by
</span>

<span>where I is the current and R the resistance. The larger the resistance or the current in the resistor, the larger the power dissipated. Due to this dissipation of power, the temperature of the filament becomes very high, and the resistance becomes incandescent, emitting light.</span>