Answer:
h~=371.26m
Explanation:
when an object falls we use the equations of accelerated motion. There is only one that gives distance.

Since we have no initial velocity (started from rest) we can get rid of the (ut) term
where a we substitute g (gravitational acceleration, constant for given heights and almost 9.81m/s^2).

Answer:
The translational kinetic energy is 225 J
The rotational kinetic energy is 225 J
Explanation:
Given;
mass of the wheel, m = 2-kg
linear speed of the wheel, v = 15 m/s
Transnational kinetic energy is calculated as;
E = ¹/₂MV²
where;
M is mass of the moving object
V is the velocity of the object
E = ¹/₂ x 2 x (15)²
E = 225 J
Rotational kinetic energy is calculated as;
E = ¹/₂Iω²
where;
I is moment of inertia
ω is angular velocity

E = ¹/₂ x 2 x (15)²
E = 225 J
Thus, the translational kinetic energy is equal to rotational kinetic energy
Answer:
F = 614913.88 N
Explanation:
We are given;
Mass of pile driver; m = 1800 kg
Height of fall of pole driver; h = 4.6 m
Depth driven into beam; d = 13.6 cm = 0.136 m
Now, from energy equations and applying to this question, we can write that;
Workdone = Change in potential energy
Formula for workdone is; W = F × d
While the average potential energy here is; W = mg(h + d)
Thus;
Fd = mg(h + d)
Where F is the average force exerted by the beam on the pile driver while in bringing it to rest.
Making F the subject, we have;
F = mg(h + d)/d
F = 1800 × 9.81 × (4.6 + 0.136)/0.136
F = 614913.88 N