Answer:
A & B
Explanation:
A & B Would be the right answer since Morse code cannot be represented through the height of the fire.
Answer:
It will become a temporary magnet because the domains will easily realign.
Explanation:
Answer:
Your answer will be A
Explanation:
The Pacific Ocean is very cold, and a cup of hot chocolate is very hot (hence the name). More thermal energy entails a higher temperature, therefore the cup of hot chocolate has more thermal energy and a higher temperature.
Answer:
i. + 22.5 m ii. 4.0 m
Explanation:
i. Image distance
Using the lens formula
1/u + 1/v = 1/f where f = focal length = + 18.0 m, u = object distance = distance of shark away from lens = + 90.0 m and v = image distance from lens = unknown
So, we find v
1/v = 1/f - 1/u
= 1/+18 - 1/+90
= (5 - 1)/90
= 4/90
v = 90/4
= + 22.5 m
So the image is real and formed 22.5 m away on the other side of the lens.
ii Length of Shark
Using the magnification formula, m = image height/object height = image distance/object distance. image height = 1.0 m where object height = length of shark.
m = image distance/object distance
= v/u
= +22.5/+90
= 0.25
0.25 = image height/object height
So,
object height = image height/0.25
= 1.0 m/0.25
= 4.0 m
So, the length of the shark is 4.0 m
Hi there!
Initially, we have gravitational potential energy and kinetic energy. If we set the zero-line at H2 (12.0m), then the ball at the second building only has kinetic energy.
We also know there was work done on the ball by air resistance that decreased the ball's total energy.
Let's do a summation using the equations:

Our initial energy consists of both kinetic and potential energy (relative to the final height of the ball)

Our final energy, since we set the zero-line to be at H2, is just kinetic energy.

And:

The work done by air resistance is equal to the difference between the initial energy and the final energy of the soccer ball.
Therefore:

Solving for the work done by air resistance:

